Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7607
標題: 利用連續波雷射結晶法製作高效能複晶矽薄膜電晶體之研究
Study on High Performance Poly-Silicon Thin Film Transistors with Continuous-Wave Laser Crystallization
作者: 陳彥佑
Chen, Yen-You
關鍵字: poly-Si
複晶矽
TFT
CW laser
diode-pumped solid state laser
薄膜電晶體
連續波雷射
二極體激發連續波固態雷射
出版社: 電機工程學系所
引用: [1.1] C. Hayzelden and J. L. Batstone, “Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films,” J. Appl. Phys., vol.73, No.12, pp.8279-8289, 1993. [2.1] 陳志強 “低溫複晶矽薄膜電晶體之可靠度探討”, 奈米通訊第十卷第四期,pp. 6, Nov. 2003. [2.2] “LTPS 低溫複晶矽顯示器技術,” 陳志強編著, pp.3-1~3-19 [2.3] Fortunato, G.; Pecora, A.; Tallarida, G.; Mariucci, L.; Reita, C.; Migliorato, P.,“Hot carrier effects in n-channel polycrystalline silicon thin-film transistors: acorrelation between off-current and transconduct- ance variations”, IEEE Electron Devices, Volume 41, Issue 3, pp. 340 – 346, March, 1994. [2.4] M.D. Jacunski, M.S. Shur, A.A. Owusu, T. Ytterdal, M. Hack, B. Iñíguez, “A short-channel DC Spice model for polysilicon thin-film transistors including temperature effects”, IEEE Transactions on Electron Devices, vol. 46, pp. 1146-1158, 1999. [2.5] Mutsumi Kimura*, Ryoichi Nozawa, Satoshi Inoue and Tatsuya Shimoda,“Current Density Enhancement at Active Layer Edges in Polycrystalline SiliconThin-Film Transistors”, Jpn. J. Appl. Phys. Vol. 40 pp. L26-L28, 2001. [2.6] M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 2234–2241, Dec. 1997. [2.7] Patent JP1991048631, JP1997118171.33 [2.8] I. –W. Wu et al., IEEE Electron Devices Lett., Vol.12,(1991),pp.181 [2.9] Akito HARA*,Michiko TAKEI, Fumiyo TAKEUCHI, Katsuyuki SUGA, Kenichi YOSHINO, Mitsuru CHIDA, Tatsuya KAKEHI, Yoshiki EBIKO, Yasuyuki SANO and Nobuo SASAKI, “High Performance Low Temperature Polycrystalline Silicon Thin Film Transistors on Non-alkaline Glass Produced Using Diode Pumped Solid State Continuous Wave Laser Lateral Crystallization,” Japanese Journal of Applied Physics Vol. 43, No. 4A, 2004, pp. 1269-1276. [2.10] Seong Jin Park, Yu Mi Ku, Ki Hyung Kim, Eun Hyun Kim, Byung Kwon Choo, Jung Su Choi, Sang Hoon Kang, Young Jin Lim, Jin Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size”, Thin Solid Films 511-512(2006) 243-247. [2.11] Fumihito Oka, and Shin-ichi Muramatsu, “Microstructural investigation of polycrystalline silicon thin films re-crystalized by laser-diode”, 3rd World Conference on Photovoltaic Energy Conversion, May11-18, 2003 Osaka, Japan [2.12] Huang-Chung Cheng, Chun-Chien Tsai, Jian-Hao Lu, Hsu-Hsin Chen,Bo-Ting Chen, Ting-Kuo Chang, and Ching-Wei Lin, ”Periodically Lateral Silicon Grains Fabricated by Excimer Laser Irradiation with a-Si Spacers for LTPS TFTs,”Journal of The Electrochemical Society, 154(1) J5-J10 (2007) [2.13] C. H. Kim, I. H. Song, S.H. Jung and M. K. Han, “A New High-Performance Poly-Si TFT by Simple Excimer Laser Annealing on Selectively Floating a-Si Layer”, School of Electrical Engineering, Seoul National University, Seoul, KOREA 2001 IEEE
摘要: 近年來,低溫複晶矽薄膜電晶體在顯示技術應用中是非常關鍵的元件。雖然透過準分子雷射結晶法可有效提升頂閘極低溫複晶矽薄膜電晶體中複晶矽層的結晶性,但依然有些許缺點,最常見的是它的隨機晶界分佈,造成場效載子移動率、臨界電壓的不均勻分布。 在本篇論文中,我們使用有別於準分子雷射的雷射系統:連續波雷射,來改善複晶矽層的結晶特性,它能夠結晶成長條狀晶粒並與掃描方向平行,並改善元件特性。我們先利用場發射掃描式電子顯微鏡,分析結晶之複晶矽材料,找出適當的雷射能量、掃描速度、真空度條件後著手進行元件之製作。我們發現,在能量9~11W、速度4~15 cm/s、腔體壓力在120 torr的條件下,能夠結晶出高品質的複晶矽薄膜。 本論文中發現,雷射能量11W、掃描速度8 cm/s、腔體壓力120 torr的條件下,有最好的結晶性,而元件的特性也最好,其中場效載子移動率平均達143cm2/V-s,而最大值可達到207 cm2/V-s。 此外,由於連續波雷射製程可完全與傳統頂閘極低溫複晶矽薄膜電晶體製作流程相容,因此製作流程十分簡單。加上由於連續波雷射結晶法掃描速度很快,使得連續波結晶法低溫複晶矽薄膜電晶體的產能上升,也因此十分適合將來系統面板的應用。
Recently, low temperature polycrystalline silicon thin film transistors (LTPS-TFTs) are the key devices in display applications. Although conventional top-gate LTPS -TFTs by excimer laser crystallization is an effective technology in improving the crystallinity of polycrystalline silicon thin films, there are still some drawbacks in conventional top-gate LTPS-TFTs such as random grain boundary, resulting in nonuniformity of mobility and threshold voltage. In this thesis, we replace the excimer laser system with continuous wave laser system to improve the polycrystalline layer and device characteristics which can form the columnar grain and parallel to the scanning direction. In the experiment part, we analyze the crystallized polycrystalline by field effect scanning electronics microscope (FE-SEM) first and find the proper conditions about laser power, scanning speed, and chamber pressure to fabricate our devices. We can crystallize polycrystalline silicon under the conditions about laser power between 9 and 11W, scanning speed between 4 and 15 cm /s, 120 torr chamber pressure. In this thesis, we can achieve good crystallinity and device characteristics under continuous wave laser power 11W, scanning speed 8cm/s, chamber pressure 120 torr. The field effect mobility can reach 143cm2/V-s averagely and 207cm2/V-s maximum. Moreover, the process flow is simple because the process flows are compatible with conventional top-gate LTPS-TFTs process. Additionally, due to the high scanning rate of CLC method was quite promising for the system on panel (SOP) application in the future.
URI: http://hdl.handle.net/11455/7607
其他識別: U0005-2208200713524500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208200713524500
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.