Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7861
標題: 薄膜技術在矽鍺光檢測器及金氧半元件之研究
The study of thin film technique in Si-Ge based photodetector and MOS device
作者: 陳玉鴻
Chen, Yu-Hung
關鍵字: SiGe
矽鍺
passivation layer
photodetectors
a-Si:H
SiO2
Liquid-phase deposition
metal-oxide-semiconductor device
保護層
光檢測器
氫化非晶矽
二氧化矽
液相沉積
金氧半元件
出版社: 電機工程學系所
引用: Chapter 1 [1] K. Washio, IEEE Trans. Electron Devices, 50, 656 (2003). [2] Kah-Wee Ang, King-Jien Chui, A. Madan, Lai-Yin Wong, Chih-Hang Tung, N. Balasubramanian, Ming-Fu Li, G.S. Samudra, and Yee-Chia Yeo, IEEE Electron Device Lett., 28, 509 (2007). [3] J.-W. Shi, Z. Pei, F. Yuan, Y.-M. Hsu, C. W. Liu, S. C. Lu, and M.-J. Tsai, Appl. Phys. Lett., 85, 2947 (2004). [4] Douglas J Pual, Semicond. Sci. Technol., 19, R75 (2004). [5] Erich Kasper, Appl. Surf. Sci., 254, 6158 (2008). [6] B. Jalali and S. Fathpour, J. Lightwave Technol., 24, 4600 (2006). [7] R. Swoboda and H. Zimmermann, Electron. Lett., 40, 505 (2004). [8] M. Yamamoto, M. Kubo, and K. Nakao, IEEE Trans. Electron Devices, 42, 58 (1995). [9] S.D. Greedy, H.F.Arrand, P.D.Sewell, and T.M.Benson, IEE Proc.-Optoelectron., 147, 391 (2000). [10] B. Jalali, M. Paniccia, and G. Reed, IEEE Microwave Magazine, 7, 58 (2006). [11] S.M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, 3rd ed., JOHN WILEY, p.663 (2007). [12] S. Zhu, G. Q. Lo, and D. L.Kwong, IEEE Photonics Technol. Lett., 20, 1396 (2008). [13] J.H. Moon, S.S. Li, and J.H. Lee, Electron. Lett., 37, 1249 (2001). [14] F. Y. Huang, X. Zhu, M. O. Tanner, and K. L. Wang, Appl. Phys. Lett., 67, 566 (1995). [15] D.C. Herbert, IEEE Trans. Electron Devices, 45, 791 (1998). [16] K.B. Yoon, I.K. Cho, and S.H. Ahn, IEEE Photonics Technol. Lett., 18, 2147, (2004). [17] Chia-Lung Tsai, Feng-Ming Lee, Fu-Yi Cheng, Meng-Chyi Wu, Sum-Chien Ko, Hai-Lin Wang, and Wen-Jeng Ho, IEEE Electron Device Lett., 26, 304, (2005). [18] Z. Pei, C.S. Liang, L.S. Lai, Y.T. Tseng, Y.M. Hsu, P.S. Chen, S.C. Lu, C.M. Liu, M.J. Tsai, and C.W. Liu, in IEDM Tech. Dig., 297 (2002). [19] J.-S. Rieh, D. Klotzkin, O. Qasaimeh, L.-H. Lu, K. Yang, L.P.B. Katehi, P. Bhattacharya, and E.T. Croke, IEEE Photonics Technol. Lett., 10, 415 (1998). [20] Tao Yin, A.M. Pappu, and A.B. Apsel, IEEE Photonics Technol. Lett., 18, 55 (2006). [21] J.D. Hwang and C.L. Wang, Thin Solid Films, 515, 3328 (2008). [22] D. K. Nayak, K. Kamjoo, J. S. Park, J. C. S. Woo, and K. L. Wang, IEEE Trans. Electron Devices, 39, 56 (1992). [23] D. K. Nayak, K. Kamjoo, J. S. Park, J. C. S. Woo, and K. L. Wang, Appl. Phys. Lett., 56, 66 (1990). [24] I. S. Goh, S. Hall, W. Eccleston, J. F. Zhang, and K. Werner, Electron. Lett., 30, 1988 (1994). [25] P. W. Li, E. S. Yang, Y. F. Yang, J. O. Chu, and B. S. Meyerson, IEEE Electron Device Lett., 15, 402 (1994). [26] D. Tchikatilov, Y. F. Yang, and E. S. Yang, Appl. Phys. Lett., 69, 2578 (1996). [27] Chien-Jung Huang, Jpn. J. Appl. Phys., 41, 4622 (2002). [28] J.S. Chou and S.C. Lee, J. Electrochem. Soc. 141, 3214 (1994). Chapter 2 [1] D. Krapf, B. Adoram, J. Shappir, A. Sa'ar, S. G. Thomas, J. L. Liu, and K. L. Wang, Appl. Phys. Lett., 78, 495 (2001). [2] J. Oh, J. C. Campbell, S. G. Thomas, S. Bharatan, R. Thomas, C. Jasper, R. E. Jones, and T. E. Zirkle, IEEE J. Quantum Electron., 38, 1238 (2002). [3] Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, IEEE Electron Device Lett., 24, 643 (2003). [4] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai, and G. C. Chi, IEEE Electron Device Lett., 25, 593 (2004). [5] Y. Kimura, K. Nakagawa, and M. Miyao, Appl. Phys. Lett., 73, 232 (1998). [6] J. D. Hwang, and C. Y. Lin, Jpn. J. Appl. Phys., 42, 1116 (2003). [7] C. T. Lee, and H. Y. Lee, IEEE Photonics Technol. Lett., 17, 462 (2005). [8] C. G. Ahn, H. S. Kang, Y. K. Kwon, and B. Kang, Jpn. J. Appl. Phys., 37, 1316 (1998). [9] F. Gao, Y. X. Lin, D. D. Huang, J. P. Li, D. Z. Sun, M. Y. Kong, Y. P. Zeng, J. M. Li, and L. Y. Lin, J. Crystal Growth, 227-228, 766 (2001). [10] M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and A. Fitzgerald, Appl. Phys. Lett., 72, 1718 (1998). [11] L. M. Giovane, H. C. Luan, A. M. Agarwal, and L. C. Kimerling, Appl. Phys. Lett., 78, 541 (2001). [12] J. Mitchell, D. Macdonald, A. Cuevas, and J. Cornish, in Proc. ANZSES, 1 (2004). [13] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New York: Wiley, 279, (1981). [14] J. D. Hwang, W. T. Chang, K. H. Hseih, G. H. Yang, C. Y. Wu, and P. S. Chen, Thin Solid Films, 493, 203 (2005). [15] M. Li and W. A. Anderson, Solid-State Electron., 51, 94 (2007). [16] L. H. Laih, W. C. Tsay, Y. A. Chen, T. S. Jen, R. H. Yuang, and J. W. Hong, Electron. Lett., 37, 1249 (2001). [17] S. Dauwe, J. Schmidt, and R. Hezel, in Proc. 29th IEEE Photovolt. Spec. Conf., 1, 1 (2002). [18] L. G. Kim, K. J. Choi, and J. L. Lee, J. Vac. Sci. Technol. B, 23, 495 (2005). [19] C. Tételin, X. Wallart, L. Vescan, and J. P. Nys, Appl. Surf. Sci., 104-105, 385 (1996). [20] A. Vonsovici, L. Vescan, R. Apetz, A. Koster, and K. Schmidt, IEEE Trans. Electron Devices, 45, 538 (1998). [21] C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, IEEE Photonics Technol. Lett., 12, 1373 (2000). [22] C.R. Wronski, D.E. Carlson, and R.E. Daniel, Appl. Phys. Lett., 29, 602 (1976). [23] P.S. Chen, S.W. Lee, M.H. Lee ,and C.W. Liu, Semicond. Sci. Technol., 21, 479 (2006). [24] S. W. Bedell, K. Fogel, D. K. Sadana, H. Chen, and A. Domenicucci, Appl. Phys. Lett., 85, 2493 (2004). [25] F. Secco d'Aragona, J. Electrochem. Soc., 119, 948 (1972). [26] J.W. Matthews and A.E. Blakeslee, J. Crystal Growth, 27, 118 (1974). [27] J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara, and I.K. Robinson, J. Vac. Sci. Technol. A, 2, 436 (1984). [28] H.Z. Wu, J.Y. Huang, Z.Z. Ye, X.B. Jiang, X. Shou, and D.L. Que, J. Crystal Growth, 191, 72 (1998). Chapter 3 [1] E.A. Fitzgerald, Y.H. Xie, M.L. Green, D. Brasen, and A.R. Kortan, Mater. Res. Soc. Symp. Proc., 220, 211 (1991). [2] R. People, J.C. Bean, D.V. Lang, A.M. Sergent, H.L. Störmer, K.W. Wecht, R.T. Lynch, and K. Baldwin, Appl. Phys. Lett., 45, 1231 (1984). [3] J. Weber and M.I. Alonso, Phys. Rev. B, 40, 5683 (1960). [4] Y.S. Chieh, J.P. Krusius, D. Green, and M. Öztürk, IEEE Electron Devices Lett., 17, 360 (1996). [5] J. Lee, A.L. Gutierrez-Aitken, S.H. Li, and P.K. Bhattacharya, IEEE Trans. Electron Devices, 43, 977 (1996). [6] W.T. Hsieh, Y.K. Fang, W.J. Lee, K.H. Wu, J.J. Ho, K.H. Chen, and S.Y. Huang, IEEE Trans. Electron Devices, 47, 939 (2000). [7] T.L. Lin, J.S. Park, S.D. Gunapala, E.W. Jones, and H.M. Del Castillo, IEEE Electron Devices Lett., 15, 103 (1994). [8] L.H. Laih, W.C. Tsay, Y.A. Chen, T.S. Jen, R.H. Yuang, and J.H. Hong, Electron. Lett., 31, 2123 (1995). Chapter 4 [1] J. S. Rieh, D. Klotzkin, O. Qasaimeh, L. H. Lu, K. Yang, L. P. B. Katehi, P. Bhattachaya, and E. T. Croke, IEEE Photonics Technol. Lett., 10, 415 (1998). [2] H. Zimmermann and T. Heide, IEEE Photonics Technol. Lett., 13, 711 (2001). [3] B. C. Hsu, S. T. Chang, C. R. Shie, C. C. Lai, P. S. Chen, and C. W. Liu, in IEDM Tech. Dig., 91 (2002). [4] J. W. Shi, Y. H. Liu, and C. W. Liu, J. Lightwave Technol., 22, 1583 (2004). [5] Z. Pei, J. W. Shi, Y. M. Hsu, F. Yung, C. S. Liang, S. C. Lu, W. Y. Hsieh, M. J. Tsai, and C. W. Liu, IEEE Electron Device Lett., 25, 286 (2004). [6] Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, IEEE Electron Device Lett., 24, 643 (2003). [7] Y. Kimura, K. Nakagawa, and M. Miyao, Appl. Phys. Lett., 73, 232 (1998). [8] J. J. Goubet, D. Stievenard, D. Mathiot, and M. Zazoui, Phys. Rev. B, 46, 10113 (1992). [9] P. Kringhoj, and A. N. Larsen, Phys. Rev. B, 52, 16333 (1995). [10] J. D. Hwang, W. T. Chang, K. H. Hseih, G. H. Yang, and C. Y. Wu, Thin Solid Films, 493, 203 (2005). [11] S. Dauwe, J. Schmidt, and R. Hezel, in Proc. 29th IEEE photovoltaic Spec. Conf., 1246 (2002). [12] S. Winnerl, D. Buca, S. Lenk, Ch. Buchal, S. Mantl, and D. -X. Xu, Mater. Sci. Eng. B., 89, 73 (2002). [13] J.D. Hwang, C.Y Kung, Y.H. Chen, C. S. Wei, and P.S. Chen, Thin Solid Films, 515, 4049 (2007). [14] Y. Kimura, K. Nakagawa, and M. Miyao, Appl. Phys. Lett., 73, 232 (1998). [15] M. Li, and W. A. Anderson, Solid-State Electron., 51, 94 (2007). [16] D. Buca, S. Winnerl, S. Lenk, S. Mantal, and Ch. Buchal, J. Appl. Phys., 92, 7599 (2002). [17] A. H. Mahan, J. Yang, S. Guha, and D. L. Williamson, Phys. Rev. B, 61, 1677 (2000). [18] S. W. Hsieh, C. Y. Chang, and S. C. Hsu, J. Appl. Phys., 74, 2638 (1993). [19] J. D. Hwang, Y. H. Chen, C.Y. Kung, and J. C. Liu, IEEE Trans. Electron Devices, 54, 2386 (2007). Chapter 5 [1] C. K. Song, S. H. Lee, K. D. Kim, J. H. Park, B. W. Koo, D. H. Kim, C. H. Hong,Y. Y. Kim, and S. B. Hwang, IEEE Electron Device Lett., 22, 315 (2001). [2] A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, IEEE J. Quantum Electron., 37, 1412 (2001). [3] J. H. Moon, S. S. Li, and J. H. Lee, Electron. Lett., 37, 1249 (2001). [4] X. Xiao, J. C. Sturm, S. R. Parihar, S. A. Lyon, D. Meyerhofer, S. Palfrey, and F. V. Shallcross, IEEE Electron Device Lett., 14, 199 (1993). [5] A. Vonsovici, L. Vescan, R. Apetz, A. Koster, and K. Schmidt, IEEE Trans. Electron Devices, 45, 538 (1998). [6] Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J.Tsai, and C. W. Liu, IEEE Electron Device Lett., 24, 643 (2003). [7] S. Winnerl, D. Buca, S. Lenk, Ch. Buchal, S. Mantl, and D. X. Xu, Microelectron. Eng., 64, 205 (2002). [8] C. S. Lin, Y. C. Chang, R. H. Yeh, and J. W. Hong, IEEE Trans. Electron Devices, 50, 1306 (2003). [9] Y. Kimura, K. Nakagawa, and M. Miyao, Appl. Phys. Lett., 73, 232 (1998). [10] J. D. Hwang, C. Y. Kung, Y. H. Chen, C. S. Wei, and P. S. Chen, Thin Solid Films, 515, 4049 (2007). [11] S. Dauwe, J. Schmidt, and R. Hezel, in Proc. 29th IEEE photovoltaic Spec. Conf., 1246 (2002). [12] S. M. Sze, Physics of Semiconductor Devices, p. 262, Wiley, New York (1981). [13] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai, and G. C. Chi, IEEE Electron Device Lett., 25, 593 (2004). [14] J. D. Hwang, Y. H. Chen, C. Y. Kung, and J. C. Liu, IEEE Trans. Electron Devices, 54, 2386 (2007). Chapter 6 [1] Washio, K., IEEE Trans. Electron Devices, 50, 656 (2003). [2] S. H. Olsen, A. G. O'Neill, S. Chattopadhyay, L. S. Driscoll, K. S. Kwa, D. J. Norris, A. G. Cullis, and D. J. Paul, IEEE Trans. Electron Devices, 51, 1245 (2004). [3] Tao Yin, A. M. Pappu, and A. B. Apsel, IEEE Photonics Technol., Lett., 18, 55 (2006). [4] D. K. Nayak, K. Kamjoo, J. S. Park, J. C. S. Woo, and K. L. Wang, IEEE Trans. Electron Devices, 39, 56 (1992). [5] D. K. Nayak, K. Kamjoo, J. S. Park, J. C. S. Woo, and K. L. Wang, Appl. Phys. Lett., 56, 66 (1990). [6] I. S. Goh, S. Hall, W. Eccleston, J. F. Zhang, and K. Werner, Electron. Lett., 30, 1988 (1994). [7] P. W. Li, E. S. Yang, Y. F. Yang, J. O. Chu, and B. S. Meyerson, IEEE Electron Device Lett., 15, 402 (1994). [8] D. Tchikatilov, Y. F. Yang, and E. S. Yang, Appl. Phys. Lett., 69, 2578 (1996). [9] L. P. Chen, Y. C. Chan, S. J. Chang, G. W. Huang, and C. Y. Chang, Jpn. J. Appl. Phys., 37, L122 (2002). [10] C. T. Lin, S. J. Chang, D. K. Nayak, and Y. Shiraki, Appl. Surf. Sci., 92, 193 (1996). [11] J. S. Chou and S. C. Lee, J. Electrochem. Soc., 141, 3214 (1994). [12] G. H. Yang, J. D. Hwang, C. H. Lan, C. M. Chan, H. Z. Chen, and S. J. Chang, Jpn. J. Appl. Phys., 46, 5119 (2007). [13] J. D. Hwang, G. H. Yang, Y. Y. Yang, and P. C. Yao, Jpn. J. Appl. Phys., 44, 7913 (2005). [14] M. K. Bera, S. Chakraborty, R. Das, G. K. Dalapati, S. Chattopadhyay, S. K. Samanta, W. J. Yoo, A. K. Chakraborty, Y. Butenko, L. iller, M. R. C. Hunt, S. Saha, and C. K. Maiti, J. Vac. Sci. Technol. A, 24, 84 (2006). Chapter 7 [1] C. Y. Chang and S. M. Sze, ULSI Technology, 656, MCGRAW-HILL, 1996. [2] T. P. Ma, J. Vac. Sci. Technol. A, 10, 705 (1992). [3] P. C. Chen, Klaus Y. J. Hsu, H. L. Hwang, and J. Y. Lin, J. Appl. Phys., 76, 5508 (1994). [4] D. Kousvatsos, J. Huang, and R. Jaccodine, J. Electrochem. Soc., 138, 1752 (1991). [5] C. F. Yeh and C. L. Chen, J. Electrochem. Soc., 141, 3177 (1994). [6] Ming-Kwei Lee, Chung-Min Shih, Shu-Ming Chang, Hong-Chi Wang, and Jung-Jie Huang, Jpn. J. Appl. Phys., 44, L220 (2005). [7] T. Obata, K. Komeda, T. Nakao, H. Ueba, and C. Tatsuyama, Appl. Surf. Sci., 117-118, 507 (1997). Chapter 8 [1] Y. Kimura, K. Nakagawa, and M. Miyao, Appl. Phys. Lett., 73, 232 (1998). [2] C. T. Lee and H. Y. Lee, IEEE Photon. Technol. Lett., 17, 462 (2005). [3] D. K. Nayak, K. Kamjoo, J. C. S. Woo, J. S. Park, and K. L. Wang, Appl. Phys. Lett., 56, 66 (1990). [4] J. Eugene, F. K. Legoues, V. P. Kesan, S. S. Iyer, and F. M. d'Heurle, Appl. Phys. Lett., 59, 79 (1991). [5] D. K. Nayak, K. Kamjoo, J. S. Park, J. C. S. Woo, and K. L. Wang, Appl. Phys. Lett., 57, 369 (1990). [6] D. C. Paine, C. Caragianis, and A. F. Schwartzman, J. Appl. Phys., 70, 5076 (1991). [7] O. Vancuawenberghe, O. C. Hellman, N. Herbot, and W. J. Tan, Appl. Phys. Lett., 59, 2031 (1991). [8] L. M. Giovane, H. C. Luan, A. M. Agarwal, and L. C. Kimerling, Appl. Phys. Lett., 78, 541 (2001). [9] J. S. Chou and S. C. Lee, Appl. Phys. Lett., 64, 1971 (1994). [10] M. P. Houng, C. J. Huang, Y. H. Wang, N. F. Wang, and W. J. Chang, J. Appl. Phys., 82, 5788 (1997). [11] C. F. Yeh, S. S. Lin, T. Z. Yang, C. L. Chen, and Y. C. Yang, IEEE Trans. Electron Devices, 41, 173 (1994). [12] C. F Yeh, C. H. Liu, and J. L. Du, IEEE Electron Device Lett., 20, 39 (1999). [13] D. W. Chou, K. E. Lee, J. J. Huang, H. R. Wu, Y. H. Wang, Jpn. J. Appl. Phys., 41, 748 (2002). [14] D. K. Nayak, J. S. Park, J. C. S. Woo, and K. L. Wang, J. Appl. Phys., 76, 982 (1994).
摘要: 本論文包含兩部分;首先第一部分是我們發展三種低溫薄膜層技術製備在矽鍺薄膜表面做為保護層,並且保持應變矽鍺層特性。薄膜保護層分別是電漿輔助化學氣相沉積技術製出氫化非晶矽保護層和二氧化矽保護層,以及利用液相沉積技術製出的二氧化矽保護層。我們分別以垂直式肖特基和水平式金半金結構矽鍺基材紅外光檢測器來驗證三種保護層對於元件特性改善的比較,入射光源我們選擇鹵素燈和波長850 nm的雷射紅外光光源。 研究發現,對於垂直式肖特基矽鍺紅外光檢測器,披覆一薄層的氫化非晶矽保護層後,可以有效地抑制元件的暗電流產生,且可以增加光電流,對於光暗電流比和響應率也明顯被提昇,進而可達到較佳特性的光檢測器。在水平式元件中,我們發現電漿輔助化學氣相沉積技術製出二氧化矽保護層的暗電流,會比液相沉積技術製出的二氧化矽保護層的暗電流來得大,這意謂著液相沉積技術製出的二氧化矽保護層可以有效地抑制矽鍺表面缺陷而改善暗電流。而利用氫化非晶矽做為水平式元件的保護層,則可以獲得最低的暗電流,這主要因素是氫化保護效應所造成。我們比較三種保護層技術運在水平式元件上,氫化非晶矽保護層元件可以獲得最佳化的暗電流、光電流、光暗電流比和響應率的特性。而對於以上不同結構元件的暗和光的電流電壓曲線趨勢變化,可由保護效應、肖特基位障效應、遮光效應及空乏區延伸效應現象作為說明解釋。 論文第二部分我們用液相沉積技術製備出高品質的二氧化矽於矽鍺基材金氧半元件。研究發現,將氧化層在氮氣中退火400℃後,可獲得最佳品質的氧化層,另外,相較於退火改善的傳統化學氣相沉積氧化層,我們的元件可以相對得到較低的漏電流、固定氧化層電荷和介面缺陷電荷。
This thesis contains two parts; in the first part, three low temperature thin film techniques were developed to passivate the surface of SiGe while not hurt the strained nature of the SiGe. They are plasma-enhanced CVD-a-Si:H (PECVD-a-Si:H), plasma-enhanced CVD-SiO2 (PECVD-SiO2) and Liquid-phase deposition-SiO2 (LPD-SiO2). Two different photodiodes vertical-type Schottky-barrier and planar-type metal-semiconductor-metal photodetectors, using SiGe as semiconductor material were fabricated as a vehicle to investigate the characters of passivated thin film and their response under a halogen lamp and a laser source with wavelength 850 nm. The PECVD a-Si:H cap layer can effectively suppress the dark current, increase the photocurrent, enhance the photo-to-dark-current ratio and photoresponsivity in vertical-type photodetectors, a better detector performance is expected. In the planar device, the PECVD-SiO2 capped device revealed the largest dark current and the LPD-SiO2 capped device revealed a relative lower dark current, indicate that the LPD-SiO2 can effectively suppress surface states and improve dark current. However, PECVD-a-Si:H capped device revealed a lowest dark current, indicates the hydrogen passivation effect plays a dominant role. The PECVD-a-Si:H capped device revealed the best performance in photocurrent, photo-to-dark-current ratio and photoresponsivity. The trend and relative amplitude of the photo I-V curves and dark I-V curves of different structures were tentatively explained by passivation effect, Schottky-barrier height, shielding effect and the depletion zone extending. In the second part, a high quality LPD-SiO2 for SiGe-based metal-oxide-semiconductor device was fabricated. LPD-SiO2 annealed at 400℃ in N2 can achieved a better quality in leakage current, fixed oxide charge and interface charge density, as compared to conventional high temperature annealed CVD oxide.
URI: http://hdl.handle.net/11455/7861
其他識別: U0005-0412200816180600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0412200816180600
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.