Please use this identifier to cite or link to this item:
標題: 時空區塊碼連結渦輪碼及低密度查核碼之效能分析
Performance Evaluation of Space-Time Block Codes Concatenated with Turbo Codes and LDPC Codes
作者: 黃暉閔
Huang, Huei-Min
關鍵字: STBC
Turbo codes
出版社: 電機工程學系所
引用: [1] G. J. Foschini and M.J. Gans, “On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas,” Wireless Personal Communications, vol. 6, pp. 311-335, Mar. 1998. [2] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585-595, Nov. 1999. [3] S. M. Alamouti, “A Simple Transmitter Diversity Scheme for Wireless Communi- cations,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998. [4] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-Time Block Coding for Wireless Communication: Performance Results,” IEEE J. Select. Areas Commun., vol. 17, pp. 451-460, Mar. 1999. [5] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes.1,” IEEE International Conference on Commun., vol. 2, pp. 1064-1070, Mar. 1993. [6] R. G. Gallager, “Low density parity check codes,” IRE Trans. Inform. Theory, vol. 8, pp. 21-28, Jan. 1962. [7] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. 27, pp. 533-547, Sept. 1981. [8] T. H. Liew and L. Hanzo, “Space-time codes and concatenated channel codes for wireless communications,” Proc. IEEE, vol. 90, pp. 187-219, Feb. 2002. [9] H. FUTAKI and T. OHTSUKI, “space-time transmit diversity schemes with low-density parity-check (LDPC) codes,” IEICE Trans. Commun., vol. E86-B, no. 10, Oct. 2003. [10] G. Zhu, Y. He, G. Liu, B. Zhang, and F. Wang, “Concatenation of space-time block codes and turbo product codes over Rayleigh flat fading channels,” IEEE Vehicular Technology Conference, vol. 2, pp. 1186-1190, May. 2005. [11] Yinggang Du, and K. T. Chan, “Enhanced space-time block coded systems by concatenating turbo product codes,” IEEE Commun. Letters, vol. 8, pp. 388-390, June 2004. [12] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004. [13] T. Richardson, A. Shokrollahi and R. Urbanke, “Design of capacity approaching irregular codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, Feb. 2001. [14] T. Richardson and R. Urbanke, “The capacity of low density parity check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599-618, Feb. 2001. [15] IEEE Std 802.16e-2005, 2006. Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE, New York, USA. [16] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 638-656, Feb. 2001. [17] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system design approach,” IEEE Tran. TCSI, vol. 52, pp. 766-775, Apr. 2005. [18] F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2,” IEEE International Conference on Commun., vol. 2, pp. 664- 668, Apr.-May 2002.
摘要: 多重輸入輸出為無線通訊之一大突破,而時空區塊碼再加上傳統的Maximal Ratio Receive Combining(MRRC)即是利用此特性,使傳送端及接收端的天線數皆可增加來達到降低錯誤率的系統。若是再加上錯誤更正碼則可大大提升系統之效能,而錯誤更正碼中又以渦輪碼及低密度查核碼最接近謝農極限。本篇論文首先引進傳統1根天線傳多根天線收之MRRC系統,再敘述時空區塊碼之多根天線傳多根天線收之特性。而對於錯誤更正碼則使用渦輪碼及低密度查核碼,對於渦輪碼採用兩個並聯迴旋碼構成,而解碼方式為BCJR演算法;對於低密度查核碼則採用IEEE 802.16e所訂定之標準,解碼方式為和積演算法。最後將渦輪碼或低密度查核碼與時空區塊碼做結合,並且討論在相同頻寬效益下哪些組合較為優秀。
The multi-input-multi-output (MINO) technique is one in the breakthroughs of wireless communications. Space time block code (STBC) with maximal ratio receive combining (MRRC) is one of the systems using MIMO to reduce error rate by increasing the numbers of antennas in transmitter and receiver. The system performance can be greatly improved by applying error correcting coding, such as turbo codes and low density party check (LDPC) codes which are known because of performance approaching their to Shannon limits. In this thesis, we first introduce the traditional MRRC with 1 transmitter antenna and multi receiver antennas. Then we describe the property of STBC with multi transmitter antennas and multi receiver antennas. For error correcting codes, we use turbo codes and LDPC codes. In turbo codes, we use two parallel concatenated convolution codes for encoding and BCJR algorithm for decoding. For LDPC codes, we use IEEE 802.16e standard for encoding and sum-product algorithm for decoding. Finally, we combine turbo codes and LDPC codes with MIMO system and discuss the bandwidth efficiency of these combinations.
其他識別: U0005-1107200812053700
Appears in Collections:電機工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.