Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8067
標題: 具有錯誤更正能力且降低峰均功率比值之多載波通訊系統
PAPR Reduction Algorithms With Error Correction Capability in Multicarrier Communication Systems
作者: 梁新潁
Liang, Hsin-Ying
關鍵字: Orthogonal frequency division multiplexing
正交分頻多工
Peak-to-average power ratio
Walsh-Hadamard transform OFDM
峰均功率比值
哈達碼轉換正交分頻多工
出版社: 電機工程學系所
引用: [1] ETSI DVB-T (EN 300 744), “Digital video broadcasting (DVB); framing structure, channel coding and modulation for digital terrestrial television,”Sophia Antipolis, France, July 1999. [2] ETSI HIPERLAN (TS 101 475), “Broadband radio access networks HIPERLAN Type 2 functional specification- Part 1: Physical layer,” Sophia Antipolis, France, Sep. 1999. [3] R. van Nee, G. Awater, M. Morikura, H. Takanashi, M.Webster, and K.W. Halford, “New high-rate wireless LAN standards,” IEEE Comm. Mag., vol. 37, no. pp. 82-88, Dec. 1999. [4] ETSI DAB (EN 300 401), “Radio broadcasting systems; digital audio broadcasting (DAB) to mobile, portable and fixed receivers,” Sophia Antipolis, France, Apr. 2000. [5] ETSI DVB RCT (EN 301 958), “Interaction channel for digital terrestrial television (RCT) incorporating multiple access OFDM,” Sophia Antipolis, France, Mar. 2001. [6] ETSI HIPERMAN (Draft TS 102 177), “High performance metropolitan area network, Part A1: Physical Layer,” Sophia Antipolis, France, Feb. 2003. [7] IEEE 802.11 (P802.11a/D6.0), “LAN/MAN specific requirements- Part 2: Wireless MAC and PHY specifications- high speed physical layer in the 5 GHz band,” IEEE 802.11, May 1999. [8] IEEE 802.16ab-01/01, “Air interface for fixed broadband wireless access systems-Part A: Systems between 2 and 11 GHz,” IEEE 802.16, June 2000. [9] L.J. Cimini, Jr., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. 33, pp. 665-675, July 1985. [10] J.A.C. Bingham,“Multicarrier modulation for data transmission: an idea whose time has come,” IEEE Comm. Mag., vol. 28 pp. 5-14, May 1990. [11] M. Park, H. Jun, J. Cho, N. Cho, D. Hong, and C. Kang, “PAPR reduction in OFDM transmission using Hadamard Transform,” Proc. IEEE Int. Conf. Communications, vol. 1, pp. 430-433, June 2000. [12] Y. Mark, C. K. Ho, and S. Sun, “On some properties of Walsh-Hadamard transformed OFDM,” in Proc. IEEE VTC, vol. 4, pp. 2096-2100, Sep. 2002. [13] Z. Lei, Y. Wu, C. K. Ho, S. Sun, P. He, and Y. Li, “Iterative detection for Walsh-Hadamard transformed OFDM,” Proc. IEEE VTC, vol. 1, pp. 637-640, Apr. 2003. [14] H. Bogucka, “On the impact of the impulse noise on the WHT-OFDM transmission,”IEEE Comm. Lett., vol. 9, pp. 37-39, Jan. 2005. [15] Z. Dlugaszewski and K. Wesolowski, “WHT/OFDM - an improved OFDM transmission method for selective fading channels,” Proc. Symposium on Communications and Vehicular Technology, vol. 19, pp. 144-149, Oct. 2000. [16] K. G. Paterson, “ On codes with low peak-to-average power ratio for multicode CDMA,” IEEE Trans. Inform. Theory, vol. 50, pp. 550-559, Mar. 2004. [17] A. E. Jones, T. A.Wilkinson, and S. K. Barton, “Block Coding Scheme for Reduction of Peak to Mean Envelope Power Ratio of Multicarrier Transmission Scheme,” Electron. Lett., vol. 30, pp. 2098-2099, Dec. 1994. [18] A. E. Jones and T. A. Wilkinson, “Combined Coding for Error Control and Increased Robustness to System Nonlinearities in OFDM,” Proc. IEEE VTC, vol. 2, pp. 904-908, Apr. 1996. [19] V. Tarokh and H. Jafarkhani, “On the Computation and Reduction of the Peak-to-Average Power Ratio in Multicarrier Communications,” IEEE Trans. Commun., vol. 48, pp. 37-44, Jan. 2000. [20] J. A. Davis and J. Jedwab,“Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes”, IEEE Trans. Inform. Theory, vol. 45, pp. 2397-2417, Nov. 1999. [21] H. Ochiai and H. Imai, ”Block coding scheme based on complementary sequences for multicarrier signals,” IEICE Trans. Fundamentals, vol. E80-A, pp. 2136-2143, Nov. 1997. [22] M. Golay, “Complementary Series,” IEEE Trans. Inform. Theory, vol. 7, pp. 82-87, Apr. 1961. [23] J. A. Davis and J. Jedwab, ”Peak-to-mean power control and error correction for OFDM transmission using Golay sequences and Reed-Muller codes”, Electron. Lett., vol.33, pp.267-268, Feb. 1997. [24] K.G. Paterson, ”Generalized Reed-Muller codes and power control in OFDM modulation,”IEEE Trans. Inform. Theory, vol.46, pp.104-120, Jan. 2000. [25] K. U. Schmidt, ”On Cosets of the Generalized First-Order Reed-Muller Code With Low PMEPR” IEEE Trans. Inform. Theory, vol.52, pp.3220-3222, July 2006. [26] R. W. Bauml, R. F. H. Fisher, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, pp. 2056-2057, Oct. 1996. [27] H. Breiling, S.H. Muller-Weinfurtner, and J.B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Comm. Lett., vol. 5, pp. 239-241, June 2001. [28] Yung-Lyul Lee, Young-Hwan You, Won-Gi Jeon, Jong-Ho Paik, and Hyoung-Kyu Song, “Peak-to-average power ratio in MIMO-OFDM systems using selective mapping,” IEEE Comm. Lett., vol. 7, pp. 575-577, Dec. 2003. [29] H. Breiling, S.H. Muller-Weinfurtner, and J.B. Huber, “SLM peak-power reduction without explicit side information”, IEEE Comm. Lett., vol. 5, pp. 239-241, June 2001. [30] S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast. , vol. 50, pp. 335-341, Sep. 2004. [31] L. J. Cimini Jr. and N.R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Comm. Lett., vol 4, pp. 86-88, Mar. 2000. [32] S. H. M‥uller and J.B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combication of partial transmit sequences,” Electron. Lett., vol. 33, pp. 368-369, Feb. 1997. [33] S. G. Kang, J. G. Kim, and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Broadcast., vol. 45, pp. 333-338, Sep. 1999. [34] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS Approach for Reduction of Peak-to-Average Power Ratio of OFDM Signal,” Electron. Lett., vol. 36, pp. 1226- 1228, July 2000. [35] B. Wu, S. Cheng, and H. Wang, “ Trellis factor search PTS for PAPR reduction in OFDM,” Proc. IEEE PIMRC, vol. 4, pp. 2514-2517, Sep. 2005. [36] N. Carson and T. A. Gulliver, “Performance of OFDM with modified RA codes and clipping,” IEEE Comm. Lett., vol. 7, pp. 440-442, Sep. 2003. [37] Y. Xin and I. J. Fair, “Peak-to-average power ratio reduction of an OFDM signal using guided scrambling coding,” in Porc. IEEE GLOBECOM, vol. 4, pp. 2390- 2394, Dec. 2003. [38] Y. Xin and I. J. Fair, “Error-Control Selective Mapping Coding for PAPR Reduction in OFDM Systems,” Proc. IEEE VTC, vol. 1, pp. 583-587, Sep. 2004. [39] H. Chen and H. Liang, “Combined Selective Mapping and Binary Cyclic Codes for PAPR Reduction in OFDM Systems,”IEEE Trans. Wireless Communications, vol. 6, Oct. 2007. [40] H. Chen and H. Liang, “A Modified Selective Mapping with PAPR Reduction and Error Correction in OFDM Systems,” Proc. IEEE WCNC, vol. 6, pp. 1330-1334, Mar. 2007. [41] H. Chen and H. Liang, “A Modified Selective MappingWith Block Coded Modulation for PAPR Reduction in OFDM Systems,” International Journal of Electrical Engineering, vol. 13, pp. 331-338, Oct. 2007. [42] H. Chen and H. Liang, “A Combination of Error Correction and Selection Mapping for PAPR Reduction in OFDM Systems,” Journal of Engineering, National Chung Hsing University, vol. 18, pp. 83-93, July 2007. [43] H. Chen and H. Liang, “Scrambling Sequences in Selective Mapping for PAPR Reduction in 16-QAM OFDM Systems,” Proc. IEEE TENCON, pp. 1-4, Oct. 2007. [44] H. Chen and H. Liang, “A Modified Selective Mapping with Block Coded Modulation for PAPR Reduction in OFDM Systems,” Proc. NST, Dec. 2006. [45] H. Chen and H. Liang, “PAPR Reduction of OFDM Signals Using Partial Transmit Sequences and Reed-Muller Codes,” IEEE Comm. Letters, vol. 11, pp. 528-530, June 2007. [46] H. Liang and H. Chen, “PAPR Reduction in OFDM Systems: the PTS with Error Correction Capability,” Proc. NST, Nov. 2007. [47] H. Chen and H. Liang, “PAPR Reduction of 16-QAM OFDM Systems by Combining Block Coded Modulation with Partial Transmit Sequences,” Proc. IEEE APWCS, pp. 30-33, July 2007. [48] H. Chen and H. Liang,“Binary Golay Complementary Sequences in Walsh-Hadamard Transformed OFDM Systems,” Proc. IEEE ISPAC, pp.999-1002, Dec. 2006. [49] H. Chen and H. Liang, “Construction of 16-QAM and 64-QAM OFDM Codes With Low PAPR and Large Euclidean Distance,” IEICE Trans. Commun., vol.E90-B, pp.1988-1996, Aug. 2007. [50] H. Chen, H. Liang, and M.-C. Chiu, ”Combined Block Coded Modulation and Peak-to-Average Power Ratio Reduction in OFDM Systems,” Proc. IEEE ISIT, pp. 423, June 2004. [51] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Comm. Lett., vol. 5, pp. 185-187, Apr. 2001. [52] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Bell Laboratories, Murray Hill, NJ 07974, U.S.A., 1996. [53] R‥oßing and Tarokh, “A construction of OFDM 16-QAM sequences having low peak powers,” IEEE Trans. Inform. Theory, vol. 47, pp. 2091-2094, July 2001. [54] E. Cusack, “Error control codes for QAM signaling,” Electron. Lett, vol. 20, pp. 62-63, Jan. 1984. [55] S. Lin and D. J. Costello, Jr., Error Control Coding., Englewood Cliffs, NJ: Prentice-Hall, 2004. [56] F. Pu, J. Gong, and L. Gan, “OFDM peak-to-average power ratio reduction by combinging the PTS with Golay complementary sequences and Reed-Muller codes,” in IEEE ICACT'05, pp. 845-888, Feb. 2005. [57] K. G. Paterson, ”Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 104-120, Jan. 2000.
摘要: 本篇論文主要是著重於降低峰均功率比值於二種調變模式下的正交分頻多工系統,其分別為二進位相位鍵移及十六進位正交振幅二種調變模式;此外,本篇論文也對於二進位相位鍵移的哈達碼轉換─正交分頻多工系統,進行探討其格雷互補序列的數學表示式,並進而統計其格雷互補序列的個數。在正交分頻多工系統中,本篇論文嘗試解決錯誤控制─選擇性映射的二個缺點:如何去選擇峰均功率比值位元與延伸至更高比例的調變模式,並各別提出一種推薦方法來進行改善;有關該二種推薦方法,其分別是使用循環─選擇性映射方法於二進位相位鍵移─正交分頻多工系統中,以及使用區塊編碼調變─選擇性映射方法於十六進位正交振幅調變─正交分頻多工系統中。此外,本篇論文也提出一種改善傳統部分傳輸序列的新型方法,我們將稱其為錯誤控制─部分傳輸序列。若比較錯誤控制─部分傳輸序列與部分傳輸序列二種方法,可以明顯發現錯誤控制─部分傳輸序列除了具有錯誤更正能力外,也不需額外傳送邊際訊息以作為在接收端回復原始資料之用。另外,為了延伸錯誤控制─部分傳輸序列至更高比例的調變模式,本篇論文提出區塊編碼調變─部分傳輸序列於十六進位正交振幅調變─正交分頻多工系統中。至於在使用二進位相位鍵移調變模式下的哈達碼轉換─正交分頻多工系統中,本篇論文已找出多組格雷互補序列組,並提供這些序列組的相關證明,以及使用圖形型式來描述該等格雷互補序列組。
This dissertation mainly focuses on reducing PAPR in a BPSK OFDM system, a 16-QAM OFDM system, and a BPSK WHT-OFDM system. First, this dissertation tries to improve two unsolved issues of the EC-SLM technique used in a BPSK OFDM system: how to select the PAPR control bits and extend the EC-SLM technique into the high-order modulation system. By combining the EC-SLM technique with cyclic codes, called Cyclic-SLM, this method is proposed to provide the selection of PAPR control bits. To extend the EC-SLM technique used in a BPSK OFDM system into a 16-QAM OFDM system, this dissertation combines a 16-QAM block coded modulation codes with the EC-SLM technique, called BCM-SLM. Next, this dissertation proposes a new scheme called EC-PTS to improve error correction capability of the original PTS technique. Comparing the EC-PTS technique with the original PTS technique, EC-PTS not only has error correction capability but also has no need to transmit the side information for recovering the input data block in the receiver. In addition, we propose a method by combining the EC-PTS technique with a 16-QAM block coded modulation codes, to extend the EC-PTS technique into the high-order modulation system; we call this method BCM-PTS. Finally, this dissertation discovers a lot of Golay complementary sequences in a BPSK WHT-OFDM system and depicts the structure of these sequences by graphic forms. Moreover, this dissertation also provides the proofs about the general expression of these Golay complementary sequences in a BPSK WHT-OFDM system.
URI: http://hdl.handle.net/11455/8067
其他識別: U0005-1606200816272000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1606200816272000
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.