請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/81126
標題: TRIB3蛋白參與辣椒素誘導胃癌細胞的凋亡
TRIB3 involves in capsaicin - induced apoptosis in gastric cancer cells
作者: 林榮展
Lin, Rong-Jaan
關鍵字: 辣椒素
Gastric cancer
出版社: 生命科學院碩士在職專班
引用: P. Deloukas, L. H. M., et al (2001). "The DNA sequence and comparative analysis of human chromosome 20." Nature 414(6866): 865-871. Mata, J., S. Curado, et al(2000). "Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis." Cell 101(5): 511-522. Shimizu, K., S. Takahama, et al (2012). "Stress-inducible caspase substrate TRB3 promotes nuclear translocation of procaspase-3." PLoS One 7(8): e42721. Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR (2006). Emerging roles of pseudokinases. Trends Cell Biol 16: 443-452. Bowers, A. J., S. Scully, et al (2003). "SKIP3, a novel Drosophila tribbles ortholog, is overexpressed in human tumors and is regulated by hypoxia." Oncogene 22(18): 2823-2835. Wu, M., L. G. Xu, et al. (2003). "SINK is a p65-interacting negative regulator of NF-kappaB-dependent transcription." J Biol Chem 278(29): 27072-27079. Ord, D., K. Meerits, et al. (2007). "TRB3 protects cells against the growth inhibitory and cytotoxic effect of ATF4." Exp Cell Res 313(16): 3556-3567. Ohoka, N., S. Yoshii, et al. (2005). "TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death." EMBO J 24(6): 1243-1255. Corcoran, C. A., X. Luo, et al. (2005). "Genotoxic and endoplasmic reticulum stresses differentially regulate TRB3 expression." Cancer Biol Ther 4(10): 1063-1067. Liu, J., W. Zhang, et al. (2012). "Role of TRIB3 in regulation of insulin sensitivity and nutrient metabolism during short-term fasting and nutrient excess." Am J Physiol Endocrinol Metab 303(7): E908-916. Yacoub Wasef, S. Z., K. A. Robinson, et al. (2006). "Glucose, dexamethasone, and the unfolded protein response regulate TRB3 mRNA expression in 3T3-L1 adipocytes and L6 myotubes." Am J Physiol Endocrinol Metab 291(6): E1274-1280. Qi, L., J. E. Heredia, et al. (2006). "TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism." Science 312(5781): 1763-1766. Kato, S. and K. Du (2007). "TRB3 modulates C2C12 differentiation by interfering with Akt activation." Biochem Biophys Res Commun 353(4): 933-938. Bezy, O., C. Vernochet, et al. (2007). "TRB3 blocks adipocyte differentiation through the inhibition of C/EBPbeta transcriptional activity." Mol Cell Biol 27(19): 6818-6831. Kuo, C. H., K. Morohoshi, et al. (2012). "The role of TRB3 in mast cells sensitized with monomeric IgE." Exp Mol Pathol. Zou, T., W. J. Liu, et al. (2011). "TRB3 mediates homocysteine-induced inhibition of endothelial cell proliferation." J Cell Physiol 226(11): 2782-2789. Hua, F., R. Mu, et al. (2011). "TRB3 interacts with SMAD3 promoting tumor cell migration and invasion." J Cell Sci 124(Pt 19): 3235-3246. Du, K., S. Herzig, et al. (2003). "TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver." Science 300(5625): 1574-1577. Cravero, J. D., C. S. Carlson, et al. (2009). "Increased expression of the Akt/PKB inhibitor TRB3 in osteoarthritic chondrocytes inhibits insulin-like growth factor 1-mediated cell survival and proteoglycan synthesis." Arthritis Rheum 60(2): 492-500. Kiss-Toth, E., S. M. Bagstaff, et al. (2004). "Human tribbles, a protein family controlling mitogen-activated protein kinase cascades." J Biol Chem 279(41): 42703-42708. Brazil, D. P. and B. A. Hemmings (2001). "Ten years of protein kinase B signalling: a hard Akt to follow." Trends Biochem Sci 26(11): 657-664. Song, G., G. Ouyang, et al. (2005). "The activation of Akt/PKB signaling pathway and cell survival." J Cell Mol Med 9(1): 59-71. Toker, A. and A. C. Newton (2000). "Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site." J Biol Chem 275(12): 8271-8274. Burgering B.M. MRH (2003). Decisions on life and death : FOXO Forkhead transcription factors are in command when Akt/PKB is off duty. J Leukoc Biol 73. Kane LP, Shapiro VS, Stokoe D, Weiss A (1999). Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 9: 601-604. Mayo LD, Donner DB (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98: 11598-11603. Gottlieb T.M. LJF, Seger R., Taya Y., Oren M. (2002). Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21. Du K. MM (1998). CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273: 32377-32379. Wang J.M. CJR, Chen. W., Kuo M.L., Yen J.J.,Yang-Yen H.F. (1999). The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 19: 6195-7206. Pap, M. and G. M. Cooper (1998). "Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway." J Biol Chem 273(32): 19929-19932. Cardone, M. H., N. Roy, et al. (1998). "Regulation of cell death protease caspase-9 by phosphorylation." Science 282(5392): 1318-1321. Xin M, Deng X (2005). Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. J Biol Chem 280: 10781-10789. Datta, S. R., H. Dudek, et al. (1997). "Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery." Cell 91(2): 231-241. Basu S. TNF, Irwin M.S., Sudol M., Downward J., (2003). Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11: 11-23. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY et al (2002). The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3: 411-421. Harding HP, Ron D (2002). Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51 Suppl 3: S455-461. Annovazzi L, Mellai M, Caldera V, Valente G, Tessitore L, Schiffer D (2009). mTOR, S6 and AKT expression in relation to proliferation and apoptosis/autophagy in glioma. Anticancer Res 29: 3087-3094. Oyadomari S, Araki E, Mori M (2002). Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7: 335-345. McGuckin MA, Eri RD, Das I, Lourie R, Florin TH (2010). ER stress and the unfolded protein response in intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 298: G820-832. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K et al (2002). ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16: 1345-1355. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA et al (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98-103. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H et al (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12: 982-995. Cao J, Dai DL, Yao L, Yu HH, Ning B, Zhang Q et al (2012). Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem 364: 115-129. Dale E. Bredesen RVRPM (2006). Endoplasmic-reticulum stress and cell death. Nature 443: 796-802. Kerr JF, Wyllie AH, Currie AR (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239-257. Lawen A (2003). Apoptosis-an introduction. Bioessays 25: 888-896. Riedl SJ, Shi Y (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5: 897-907. Shi Y (2002). Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9: 459-470. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J et al (2001). A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410: 112-116. Borner C (2003). The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39: 615-647. Korsmeyer SJ (1995). Regulators of cell death. Trends Genet 11: 101-105. Zou CG, Cao XZ, Zhao YS, Gao SY, Li SD, Liu XY et al (2009). The molecular mechanism of endoplasmic reticulum stress-induced apoptosis in PC-12 neuronal cells: the protective effect of insulin-like growth factor I. Endocrinology 150: 277-285. Wali VB, Bachawal SV, Sylvester PW (2009). Endoplasmic reticulum stress mediates gamma-tocotrienol-induced apoptosis in mammary tumor cells. Apoptosis 14: 1366-1377. Humphrey RK, Newcomb CJ, Yu SM, Hao E, Yu D, Krajewski S et al (2010). Mixed lineage kinase-3 stabilizes and functionally cooperates with TRIBBLES-3 to compromise mitochondrial integrity in cytokine-induced death of pancreatic beta cells. J Biol Chem 285: 22426-22436. Schwarzer R, Dames S, Tondera D, Klippel A, Kaufmann J (2006). TRB3 is a PI 3-kinase dependent indicator for nutrient starvation. Cell Signal 18: 899-909. Cordell GA, Araujo OE (1993). Capsaicin: identification, nomenclature, and pharmacotherapy. Ann Pharmacother 27: 330-336. Amantini C, Mosca M, Nabissi M, Lucciarini R, Caprodossi S, Arcella A et al (2007). Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102: 977-990. Gong XF, Wang MW, Ikejima T (2005). [Mechanisms of capsaicin-induced apoptosis of human melanoma A375-S2 cells]. Zhonghua Zhong Liu Za Zhi 27: 401-403. Gil YG, Kang MK (2008). Capsaicin induces apoptosis and terminal differentiation in human glioma A172 cells. Life Sci 82: 997-1003. Amantini C, Ballarini P, Caprodossi S, Nabissi M, Morelli MB, Lucciarini R et al (2009). Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis 30: 1320-1329. Huang SP, Chen JC, Wu CC, Chen CT, Tang NY, Ho YT et al (2009). Capsaicin-induced apoptosis in human hepatoma HepG2 cells. Anticancer Res 29: 165-174. Ip SW, Lan SH, Huang AC, Yang JS, Chen YY, Huang HY et al (2012). Capsaicin induces apoptosis in SCC-4 human tongue cancer cells through mitochondria-dependent and -independent pathways. Environ Toxicol 27: 332-341. Ip SW, Lan SH, Lu HF, Huang AC, Yang JS, Lin JP et al (2012). Capsaicin mediates apoptosis in human nasopharyngeal carcinoma NPC-TW 039 cells through mitochondrial depolarization and endoplasmic reticulum stress. Hum Exp Toxicol 31: 539-549. Lee MJ, Kee KH, Suh CH, Lim SC, Oh SH (2009). Capsaicin-induced apoptosis is regulated by endoplasmic reticulum stress- and calpain-mediated mitochondrial cell death pathways. Toxicology 264: 205-214. Morre DJ, Chueh PJ, Morre DM (1995). Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Proc Natl Acad Sci U S A 92: 1831-1835. Macho A, Calzado MA, Munoz-Blanco J, Gomez-Diaz C, Gajate C, Mollinedo F et al (1999). Selective induction of apoptosis by capsaicin in transformed cells: the role of reactive oxygen species and calcium. Cell Death Differ 6: 155-165. Holzer P, Lippe IT (1988). Stimulation of afferent nerve endings by intragastric capsaicin protects against ethanol-induced damage of gastric mucosa. Neuroscience 27: 981-987. Yeoh KG, Kang JY, Yap I, Guan R, Tan CC, Wee A et al (1995). Chili protects against aspirin-induced gastroduodenal mucosal injury in humans. Dig Dis Sci 40: 580-583. Holzer P, Livingston EH, Saria A, Guth PH (1991). Sensory neurons mediate protective vasodilatation in rat gastric mucosa. Am J Physiol 260: G363-370. Matsumoto J, Takeuchi K, Okabe S (1991). Characterization of gastric mucosal blood flow response induced by intragastric capsaicin in rats. Jpn J Pharmacol 57: 205-213. Kang JY, Teng CH, Wee A, Chen FC (1995). Effect of capsaicin and chilli on ethanol induced gastric mucosal injury in the rat. Gut 36: 664-669. Takeuchi K, Ueshima K, Matsumoto J, Okabe S (1992). Role of capsaicin-sensitive sensory nerves in acid-induced bicarbonate secretion in rat stomach. Dig Dis Sci 37: 737-743. Szallasi A, Blumberg PM (1999). Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51: 159-212. Pramanik KC, Boreddy SR, Srivastava SK (2011). Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One 6: e20151. Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK (2008). In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 13: 1465-1478. Choi CH, Jung YK, Oh SH (2010). Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-activated protein kinases and retards cell death by suppressing endoplasmic reticulum stress-mediated apoptosis. Mol Pharmacol 78: 114-125. Sanchez AM, Malagarie-Cazenave S, Olea N, Vara D, Chiloeches A, Diaz-Laviada I (2007). Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis 12: 2013-2024. Lee SH, Krisanapun C, Baek SJ (2010). NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 31: 719-728.
摘要: TRIB3是ㄧ個從果蠅到人類都存在的基因,人類細胞中表現的TRIB3蛋白參與了許多重要的細胞流程,包括細胞的生長、分化、發炎反應、移行能力、侵襲力、新陳代謝以及細胞凋亡等,這些機制建立於TRIB3可以調控轉錄因子以及和蛋白質間的交互作用。然而,在過去的研究中顯示,TRIB3在細胞內是抵抗或是促進細胞凋亡仍然是有爭議的,其機轉也尚未清楚,但是許多的研究認為TRIB3是一個壓力感受器蛋白質,常常會被誘導出現在細胞處於壓力的情況下。辣椒素是辣椒中的主要成分,經萃取純化後已經運用在癌細胞的研究上。在過去的研究顯示,辣椒素可以抑制癌細胞的增殖以及促使細胞凋亡,但是其相關機制仍然未完全明瞭。為了研究TRIB3在胃癌細胞內可以被辣椒素誘導表現,並調控辣椒素誘導的細胞凋亡,我們建構TRIB3的表現載體以及利用RNA干擾技術來調控TRIB3在胃癌細胞內的表現,並研究其參與細胞凋亡的路徑。我們發現在七種不同胃癌細胞中的TRIB3蛋白表現量都不一樣,而且都一樣不穩定,並透過26S 蛋白酶體降解。我們使用AGS, MKN-45, SCM-1 and TMK-1處理辣椒素,發現除了SCM-1在50 uM處理24小時就可以誘導TRIB3蛋白增量表現外,其它細胞株均需200 uM處理24小時才會誘導TRIB3蛋白增量表現,並開始產生細胞凋亡的現象,其細胞凋亡的比率和TRIB3的誘導量及辣椒素劑量成正相關。從以上的研究結果,我們推測調控TRIB3蛋白表現可以控制辣椒素誘導細胞凋亡的機制。我們使用TRIB3的表現載體來增量TRIB3表現,並處理辣椒素,結果顯示,增量表現TRIB3後處理辣椒素誘導的細胞凋亡增加,並且可以降低辣椒素處理劑量,其磷酸化AKT的表現量也降低;當利用RNA干擾技術降低TRIB3蛋白表現並處理辣椒素後,結果可以逆轉。從以上的研究結果,我們推測TRIB3蛋白調控辣椒素誘導細胞凋亡的機制是透過抑制AKT磷酸化,進而影響到AKT所調控的路徑,但其調控的分子機制則需更進一步的研究探討。
TRIB3 is an evolutionarily conserved protein from Drosophila to human. Human cells express TRIB3 to play an key determinant in a large number of cellular processes, such as control the proliferation, differentiation, inflammatory response, migration, invasion, metabolisms and apoptosis. These mechanisms are established in TRIB3 can regulate transcription factor and protein interactions. However, in previous studies that TRIB3 is anti-apoptoic or pre-apoptoic still controversial, the mechanism remain unclear, but several studies have led to the suggestion that TRIB3 was due to as a stress sensor, and induction in cell stressful condition. Capsaicin is the main ingredient of hot chili peppers, after extraction and purification has been used in cancer research. In previous studies have shown that capsaicin can inhibit cancer cell proliferation and promote apoptosis, but its relevant mechanisms still not fully understood. In order to study the TRIB3 in gastric cancer cells within capsaicin induction and regulation of capsaicin-induced apoptosis, we construct the TRIB3-Myc plasmid and using RNA interference technology to regulate TRIB3 expression in gastric cancer cells, and study that involved in apoptosis pathway. We found that TRIB3 expression in seven different gastric cancer cells is not the same, but are the same unstable, and degradation by the 26S proteasome. We treated capsaicin in AGS, MKN-45, SCM-1 and TMK-1, the data showed that treated capsaicin 50 uM for 24 hours in SCM-1 can induction TRIB3, other cell lines need to be 200 uM for 24 hours, and began to produce the phenomenon of apoptosis, that apoptosis ratio and TRIB3 induction by capsaicin dose dependent. These results suggest that regulation the TRIB3 may control a mechanism of capsaicin-induced apoptosis. We overexpression TRIB3 and treated capsaicin, the data showed that overexpression TRIB3 and treated capsaicin could promoted capsaicin induced apoptosis, and can reduce the dose of capsaicin, the phosphorylated AKT level also reduced; when knockdown TRIB3 and treated capsaicin, the result were reversed. From the above findings, we speculate that the mechanism of TRIB3 regulate capsaicin-induced apoptosis mediate inhibition of AKT phosphorylation, thereby affecting the AKT regulated pathway, but the molecular mechanisms of its regulation will be further investigated.
URI: http://hdl.handle.net/11455/81126
其他識別: U0005-0201201308460600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0201201308460600


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。