Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8408
標題: 自平衡載人運輸車之系統設計、建模與控制研究
System Design, Modeling and Control of Self-Balancing Human Transportation Vehicles
作者: 林水春
Lin, Shui-Chun
關鍵字: one-wheeled vehicles
兩輪與獨輪自平衡載人運輸車
two-wheeled vehicles
digital signal processors
nonlinear control
adaptive control
Lyapunov stability theory
數位信號處理器
非線性控制
適應控制
Lyapunov穩定定理
出版社: 電機工程學系所
引用: [1] F. Grasser, A. D. Arrigo, and S. Colombi, “JOE: a mobile, inverted pendulum,” IEEE Transactions on Industrial Electronics, vol.49, no.1, pp.107-114, Feb. 2002. [2] K. Pathak, J. Franch, and S. K. Agrawal, “Velocity and position control of a wheeled inverted pendulum by partial feedback linearization,” IEEE Transactions on Robotics, vol. 21, no. 3, pp.505-513, Jun. 2005. [3] D. Voth, “Segway to the future,” IEEE Transactions on Intelligent Systems, vol.20, no.3, pp.5-8, 2005. [4] M. Sasaki, N. Yanagihara, O. Matsumoto and K. Komoriya, “Steering control of the personal riding-type wheeled mobile platform (PMP),” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1697-1702, 2-6 Aug. 2005. [5] R. D. Petty, “Transportation technologies for community policing: a comparison,” in Proc. IEEE International Conference on ISTAS/CPTED 2003 International Symposium, pp.33-38, 2003. [6] B. Bapiraju, K. N. Srinivas, P. P. Kumar, and L. Behera, “On balancing control strategies for a reaction wheel pendulum,” in Proc. IEEE India Annual Conference, pp.199-204, 20-22, Dec. 2004. [7] K. Iuchi, H. Niki, and T. Murakami, “Attitude control of bicycle motion by steering angle and variable COG control,” in Proc. IEEE IECON 32nd Annual Conference, pp.2065-2070, 6-10 Nov. 2005. [8] T. Blackwell, “Building a balancing scooter,” [Online]. Available: http://tlb.org/eunicycle.html . [9] J. S. Hu and M. C. Tsai, “Robust control of auto-balancing two-wheeled cart,” in Proc. of CACS Automatic Control Conference, Nov.18-19, 2005. [10] J. S. Wang, Walking control of a self-balancing two-wheeled robot, M. S. Thesis, Department of Electrical Engineering, National Central University, June 2003. [11] C. Y. Cheng, Balancing control of a self-balancing two-wheeled robot, M. S. Thesis, Department of Electrical Engineering, National Central University, June 2003. [12] B. Browning, P. E. Rybski, J. Searock, and M. M. Veloso, “Development of a soccer-playing dynamically-balancing mobile robot,” in Proc. IEEE International Conference, ICRA ''04, 2004, vol.3, pp.1752-1757, Apr. 26-May 1, 2004. [13] Y. Ou, and Y. Xu. “Convergence analysis for a class of skill learning controllers,” in Proc. IEEE International Conference, ICRA''04, 2004, vol.3, pp. 2653 - 2658, 26 Apr. - 1 May, 2004. [14] J. Searock, B. Browning, and M. Veloso, “Turning Segways into soccer robots,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, vol.1, pp.1029 - 1034, 28 Sept. - 2 Oct. 2004. [15] J. Fleischer, B. Szatmary, D. Hutson, D. Moore, J. Snook, G. M. Edelman, and J. Krichmar, “A neurally controlled robot competes and cooperates with humans in Segway soccer,” in Proc. IEEE International Conference, ICRA ''06, 2006, vol.3, pp.3673-3678, May 15-19, 2006. [16] T. B. Welch, M. G. Morrow, and C. H. G. Wright, “Using DSP hardware to control your world,” in Proc. IEEE International Conference, (ICASSP ''04).vol.5, 17-21 pp.V-1041- 4, May 2004. [17] A. Salerno, and J. Angeles, “On the nonlinear controllability of a quasi holonomic mobile robot,” in Proc. IEEE International Conference on Robotics and Automation, vol.3, pp.3379- 3384, 14-19, Sep. 2003. [18] R. J. Wai, and L. J. Chang, “Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique,” IEEE Transactions on Industrial Electronics, vol.53, no.2, pp.674-692, Apr. 2006. [19] R. J. Wai, and L. J. Chang, “Stabilizing and tracking control of nonlinear dual-axis inverted-pendulum system using fuzzy neural network,” IEEE Transactions on Industrial Electronics, vol.14, no.1, pp.145-168, Feb. 2006. [20] H. T. Cho, and S. Jung, “Neural network position tracking control of an inverted pendulum an X-Y table robot,” in Proc IEEE/RSJ International Conference on, Intelligent Robots and Systems, vol.2, pp.1210-1215, 27-31, Oct. 2003. [21] J. Xiao, S. Zhang, J. Xiao, and N. Xi, “Motion mode control in double inverted pendulum system,” in Proc IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp.831-836, 2005 . [22] H. T. Cho, and S. Jung, “Balancing and position tracking control of an inverted pendulum on a x-y plane using decentralized neural networks,” in Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol.1, pp.181-186, 20-24 Jul. 2003. [23] M. I. El-Hawwary, A. L. Elshafei, H. M. Emara, and H. A. A. Fattah, “Adaptive Fuzzy Control of the Inverted Pendulum Problem,” IEEE Transactions on Control Systems Technology, vol.14, no.6, pp.1135-1144, Nov. 2006. [24] A. S. Shiriaev, A. Friesel, J. Perram, and A. Pogromsky, “On stabilization of rotational modes of an inverted pendulum” in Proc.39th IEEE Conference on Decision and Control, vol.5, pp.5047-5052, 2000. [25] M. Doi, Y. Hasegawa, and T. Fukuda, “3D dynamic walking based on the inverted pendulum model with two degree of underactuation,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.4166-4171, 2-6 Aug. 2005. [26] D. J. N. Limebeer, and R. S. Sharp, “Bicycles, motorcycles, and models,” IEEE Control Systems Magazine, vol.26, no.4, pp.34-61, Oct. 2006. [27] A. Shimada, and N. Hatakeyama, “High-speed motion control of wheeled inverted pendulum robots,” in Proc. 4th IEEE International Conference on Mechatronics, pp.1-6, 8-10 May 2007. [28] C. C. Tsai, S. C. Lin and W. L. Luo, “Adaptive steering of a self-balancing two-wheeled transporter,” in Proc. 2006 CACS Automatic Control, Tamsui, Taiwan, Nov. 10-11, 2006. [29] S. C. Lin, C. C. Tsai, and W. L. Luo, “Adaptive neural network control of a self-balancing two-wheeled scooter,” in Proc. IEEE IECON 2007 33rd Annual Conference, pp.868-873, 5-8 Nov. 2007. [30] Y. Xu, and K. W. Au, “Stabilization and path following of a single wheel robot,” IEEE/ASME Transactions on Mechatronics, vol.9, no.2, pp.407-419, Jun. 2004. [31] H. B. Brown Jr, and Y. Xu, “A single-wheel, gyroscopically stabilized robot,” IEEE Robotics & Automation Magazine, vol.4, no.3, pp.39-44, Sep. 1997. [32] Z. Sheng, and K. Yamafuji, “Postural stability of a human riding a unicycle and its emulation by a Robot,” IEEE Transactions on Robotics and Automation, vol.13 no.5, pp.709-720, Oct. 1997. [33] S. Cedervall, and H. Xiaoming, “Nonlinear observers for unicycle robots with range sensors,” IEEE Transactions on Automatic Control, vol.52, no.7, pp.1325-1329, Jul. 2007. [34] Y. Ou and Y. Xu, “Balance control of a single wheel robot,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and System, vol.2, pp.2043-2048, 30 Sept.-5 Oct. 2002. [35] A. Alasty, and H. Pendar, “Equations of motion of a single-wheel robot in a rough terrain,” in Proc. IEEE International Conference on Robotics and Automation. pp.879-884, 18-22 Apr. 2005. [36] S. Majima, T. Kasai, and T. Kadohara, “A design of a control method for changing yaw direction of an underacuatted unicycle robot,” in Proc. IEEE Region 10 Conference, TENCON, pp. 1-4, Nov. 2006. [37] Z. Jin, and G. Zhang, “The nonholonomic motion planning and control of the unicycle mobile robot,” in Proc. Intelligent control and automation, WCICA .vol.1, pp.3461-3465, 2006. [38] Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, “Closed loop steering of unicycle like vehicles via Lyapunov techniques,” IEEE Robotics & Automation Magazine, vol.2, no.1, pp.27-35, Mar. 1995. [39] V. D. Colli, G. Tomassi, and M. Scarano, “Single wheel" longitudinal traction control for electric vehicles,” IEEE Transactions on Power Electronics, vol.21, no.3, pp.799-808, May 2006. [40] R. Gervais “The electric unicycle riding (a unicycle is the most useless thing you can do),” [Online], 2007. Available: http://tlb.org/eunicycle.html . [41] Monowheels, [Online], 2007. Available: http://www.dself.dsl.pipex.com [42] T. Barna, K. Bretz, T. Fodor, I. Rudoj, and A. Tsura, “Experimental testing of magnesium and chrome-molybdenum-alloy bicycle frames,” IEEE Transactions on Vehicular Technology, vol.51, no.2, pp.348-353, Mar. 2002. [43] R. Giannetti, F. Chichi, and P. Erzegovesi, “Low-cost lightweight strain measurement system for bicycle application,” IEEE Transactions on Instrumentation and Measurement, vol.47, no.4, pp.893-899, Aug. 1998. [44] T. Kiryu, K. Takahashi, and K. Ogawa, “Multivariate analysis of muscular fatigue during bicycle ergometer exercise,” IEEE Transactions on Biomedical Engineering, vol.44, no.8, pp.665-672, Aug. 1997. [45] H. Ling, and J. Wu, “A study on cyclist behavior at signalized intersections,” IEEE Transactions on Intelligent Transportation Systems, vol.5, no.4, pp.293-299. Dec. 2004. [46] Z. Lin, B. Francis, and M. Maggiore, “Feasibility for formation stabilization of multiple unicycles,” in Proc. IEEE CDC. 43rd conference vol. 3, pp. 2447-2452, 14-17 Dec. 2004. [47] S. Lee, and H. Woonchul, “Self stabilizing strategy in tracking control of unmanned electric bicycle with mass balance,” in Proc. IEEE international conference on intelligent Robots and System, vol.3, pp.2200 - 2205, Sep.30 - Oct.5 2002. [48] M. A. Brown, “Electric bicycle transportation system,” in Proc. Energy Conversion Engineering Conference, IECEC ''02, pp.737-739, 29-31 Jul. 2004. [49] N. H. Getz, “Internal equilibrium control of a bicycle,” in Proc. 34th IEEE Conference, Decision and Control, vol.4, pp.4285 - 4287, 13-15 Dec. 1995. [50] J. R. Rowland, “Integrating lifelong learning into a feedback controls course,” Frontiers in Education Conference, FIE ''99. 29th Annual vol.2, pp.12b6/13-19, Nov. 1999. [51] M. E. Magana, and F. Holzapfel, “Fuzzy-logic control of an inverted pendulum with vision feedback,” IEEE Transactions on Education, vol.41, no.2, pp.165-170, May 1998. [52] R. Kelly, and J. Moreno, “Learning PID structures in an introductory course of automatic control,” IEEE Transactions on Education, vol.44, no.4, pp373-376, Nov. 2001. [53] J. C. Basilio, and S. R. Matos, “Design of PI and PID controllers with transient performance specification,” IEEE Transactions on Education, vol.45, no.4, pp.364-370, Nov. 2002. [54] K. T. Kok, and H. L. Goh, “Development of a mobile spreadsheet-based PID control simulation system,” IEEE Transactions on Education, vol.49, no.2, pp.199-207, May 2006. [55] M. H. Knudsen, “Experimental modeling of dynamic systems: an educational approach,” IEEE Transactions on Education, vol.49, no.1, pp.29-38, Feb. 2006. [56] K. J. Astrom, R. E. Klein, and A. Lennartsson, “Bicycle dynamics and control: adapted bicycles for education and research,” IEEE Control Systems Magazine , vol.25, no.4, pp.26-47, Aug. 2005. [57] A. Salerno, and J. Angeles, “The control of semi-autonomous self-balancing robots undergoing large payload-variations,” in Proc. IEEE ICRA ''04, vol.3, pp.1740-1745, 26 Apr. - 1 May, 2004. [58] T. Sansaloni, A. Perez-Pascual, V. Torres, V. Almenar, J. F. Toledo, and J. Valls, “FFT spectrum analyzer project for teaching digital signal processing with FPGA devices,” IEEE Transactions on Education, vol.50, no.3, pp.229-235, Aug. 2007. [59] D. J. Lim, “A laboratory course in real-time software for the control of dynamic systems,” IEEE Transactions on Education, vol.49, no.3, pp.346-354, Aug. 2006. [60] Ü. Özguner, “Three-course control laboratory sequence,” IEEE Transactions on Control system magazine, vol.9, no.3, pp.4-9, Apr. 1989. [61] P. Podrzaj, B. Regojevic, and Z. Kariz, “An enhanced mechanical system for studying the basics of control system dynamics,” IEEE Transactions on Education, vol.48, no.1, pp.23-28, Feb. 2005. [62] A. M. Davis, “A simple way of obtaining the reduced Jordan form of a state equation,” IEEE Transactions on Education, vol.47, no.4, pp.481-489, Nov. 2004. [63] P. Dorato, “Undergraduate control education in the US,” IEEE Control Systems Magazine, vol.19, no.5, pp.38-39, Oct. 1999. [64] A. A. Rodriguez, R. P. Jr. Metzger, O. Cifdaloz, and T. Dhirasakdanon, “Description of a modeling, simulation, animation, and real-time control (mosart) environment for a class of electromechanical systems,” IEEE Transactions on Education, vol.48, no.3, pp.359-374, Aug. 2005. [65] P. S. Shiakolas, S. R.Van Schenck, D. Piyabongkarn, and I. Frangeskou, “Magnetic levitation hardware-in-the-loop and MATLAB-based experiments for reinforcement of neural network control concepts,” IEEE Transactions on Education, vol.47, no.1, pp.33-41, Feb. 2004. [66] C. Vibet, “Control teaching via low cost setups,” IEEE Transactions on Education, vol.37, no.3, pp.269-270, Aug. 1994. [67] R. E. Skelton, and T. Iwasaki, “Increased roles of linear algebra in control education,” IEEE Control Systems Magazine, vol.15, no.4, pp.76-90, Aug. 1995. [68] C. S. Chen, and W. L. Chen, “Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system,” IEEE Transactions on Industrial Electronics, vol.45, no.2, pp.297-306, Apr. 1998. [69] T. J. Koo, “Stable model reference adaptive fuzzy control of a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol.9, no.4, pp.624-636, Aug. 2001 [70] C. M. Lin and Y. J. Mon, “Decoupling control by hierarchical fuzzy sliding-mode controller,” IEEE Transactions on Control Systems Technology, vol.13, vol.4, pp.593-598, Jul. 2005. [71] W. S. Yu and C. J. Sun, “Fuzzy model based adaptive control for a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol.9, no.3, pp.413-425, Jun. 2001. [72] C. W. Ji, F. L. Lei and K. Kin, “Fuzzy logic controller for an inverted pendulum system,” in Proc. IEEE ICIPS ''97, vol.1, pp.185-189, 28-31 Oct. 1997. [73] H. K. Lam, F. M. Leung and P. K. S. Tam, “A linear matrix inequality approach for the control of uncertain fuzzy systems,” IEEE Control Systems Magazine, vol.22, no.4, pp.20-25, Aug. 2002. [74] S. Brock, “Practical approach to fuzzy control of inverter pendulum,” in Proc. IEEE International Conference on Industrial Technology, vol.1, pp.31-35, 10-12 Dec. 2003. [75] B Xiaojun, X. Z. Gao and H. Xianlin, “Design of a hybrid fuzzy-PD controller for inverted pendulum,” in Proc IEEE International Conference on Systems, Man and Cybernetics, vol.3, pp.2286-2291, 10-13 Oct. 2004. [76] H. Liu, F. Sun and Z. Sun, “Stability analysis and synthesis of fuzzy singularly perturbed systems,” IEEE Transactions on Fuzzy Systems, vol.13, no.2, pp.273-284, Apr. 2005. [77] Z. H. Xu, D. M. Jin and Z. J. Li, “Using learning samples to construct fuzzy logic systems with the application to inverted pendulum control,” in Proc. International Conference , Machine Learning and Cybernetics, vol. 2, pp.1085-1088, 4-5 Nov. 2002. [78] W. S. Yu and C. J. Sun, “Fuzzy model based adaptive control for a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol.9, no.3, pp.413-425, Jun. 2001. [79] H. K. Lam, F. H. Leung and P. K. S. Tam, “Design and stability analysis of fuzzy model-based nonlinear controller for nonlinear systems using genetic algorithm,” IEEE Transactions on Systems, Man and Cybernetics-Part B, vol.33, no.2, pp.250-257, Apr. 2003. [80] Y. Lee and S. H. Zak, “Uniformly ultimately bounded fuzzy adaptive tracking controllers for uncertain systems,” IEEE Transactions on Fuzzy Systems, vol.12, no.6, pp.797-811, Dec. 2004. [81] S. H. Zak, “Stabilizing fuzzy system models using linear controllers,” IEEE Transactions on Fuzzy Systems, vol.7, no.2, pp.236-240, Apr.1999. [82] L. X. Wang, “Stable adaptive fuzzy controllers with application to inverted pendulum tracking,” IEEE Transactions on Systems, Man, and Cybernetics-part B, vol.26, no.5, PP.677-691, Oct. 1996. [83] H. O. Wang, K. Tanaka and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Transactions on Fuzzy Systems, vol.4, no.1, pp.14-23, Feb. 1996. [84] E. A. Misawa, M. S. Arrington and T. D. Ledgerwood, “Rotational inverted pendulum: a new control experiment,” in Proc. American Control Conference, vol.1, pp.29 -33, 21-23 Jun. 1995. [85] K. Jinwoo and B. P. Zeigler, “Designing fuzzy logic controllers using a multi- resolutional search paradigm,” IEEE Transactions on Fuzzy Systems, vol.4, no.3, pp.213-226, Aug. 1996. [86] X. J. Ma, Z. Q. Sun, and Y. Y. He, “Analysis and design of fuzzy controller and fuzzy observer,” IEEE Transactions on Fuzzy systems, vol.6, no.1, Feb. 1998. [87] Y. Byungkook and H. Woonchul, “Adaptive fuzzy sliding mode control of nonlinear system,” IEEE Transactions on Fuzzy Systems, vol.6, no.2, pp.315-321, May 1998. [88] P. P. Mohanlal, and M. R. Kaimal, “Exact fuzzy modeling and optimal control of the inverted pendulum on cart,” in Proc IEEE Conference on Decision and Control, vol.3, pp.3255-3260, 10-13 Dec. 2002. [89] W. X. Cheng, and L. Aiguo, “Fuzzy variable structure control for an inverted pendulum,” in Proc. IEEE Conference on Robotics, Automation and Mechatronics, vol.2, pp.1117-1119, 1-3 Dec. 2004. [90] B. Bloom (ed.), Taxonomy of education objectives, New York: Longmans, Green & Co., 1956. [91] R. C. Dorf, and R. H. Bishop, Modern control systems, 10th ed., Prentice-Hall, 2005. [92] B. C. Kuo, and F. Golnaraghi, Automatic control systems, 8th ed., John Wiley & Sons, 2003. [93] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback control of dynamic systems, 4th ed., Prentice-Hall, 2002. [94] C. L. Phillips, and H. T. Nagle, Digital system analysis and design, 3rd ed., Prentice-Hall, 1995. [95] S. H. Zak, Systems and control, Oxford University Press, 2003. [96] H. K. Khalil, Nonlinear systems, 3rd ed., Prentice Hall, 2002. [97] 劉永華,中國古代車輿馬具,上海辭書,2002。
摘要: 本論文旨在發展兩輪與獨輪自平衡載人運輸車之系統設計、建模與控制技術之研究,以及使用陀螺儀、傾斜儀、電位計、馬達驅動器、數位信號處理器(DSP)等現有低價元件,建構兩種低成本且具人性化的運輸車輛。在完成車體系統設計後,牛頓運動學被用以建立包含車輪移動與地面的摩擦阻力之非線性與線性化數學模型。藉由解耦技術的運用,將運輸電動車模型分成兩個子系統:類倒單擺平衡控制子系統與轉向控制子系統,並以徑向網路(RBFNN)方法學習摩擦力以補償車輪與移動地面之間的摩擦阻力,繼而提出古典控制方法、狀態適應控制技術與適應類神經控制法則達成車體自平衡控制與轉向控制的目標。該適應與非線性適應控制法則皆以Lyapunov穩定定理証明其閉迴路穩定性。本文另將兩輪自平衡載人運輸車之設計方法、非線性之數學模型與控制技術,推展應用到自平衡載人電動獨輪車的研究,實現平衡自走的功能。電腦模擬及實驗結果皆證實本文所建構的控制器有能力提供適當的控制動作,車體能有效的依照駕駛者的指令完成其動作。
This dissertation develops techniques for system design, modeling and control of two personal human transportation vehicles, including one-wheeled and two-wheeled vehicles, which are constructed using common-tech commercial components including gyro scope, tilt sensor, motor driver, and digital signal processors (DSPs). The mechatronic structures for the vehicles are briefly described and their nonlinear and linearized mathematical models incorporating the fictions between the wheels and motion surface are derived. With decomposition of the two-wheeled transporter into two subsystems: the yaw motion subsystem and mobile inverted pendulum subsystem, classical control methods, adaptive control laws and nonlinear control strategies are proposed to maintain the inverted pendulum self-balancing and achieve the yaw motion control, where radial-basis-function neural networks (RBFNNs) are employed to approximate the friction forces and uncertainties. The close-loop stabilities of the proposed control laws are established utilizing the Lyapunov stability theory. The nonlinear mathematical modeling adaptive controls and nonlinear controls extend to an electric unicycle driven by one DC motor. The proposed methods are expected to be useful and powerful in keeping self-balancing and achieving consistent motion control performance for different riders. Numerical simulations and experimental results show that the proposed controllers are capable of giving satisfactory control actions to steer the transporters.
URI: http://hdl.handle.net/11455/8408
其他識別: U0005-3107200811143700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107200811143700
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.