Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8443
標題: 基於雷射測距儀之反應式機器人導航系統
Reactive Robot Navigation System Using Laser Range Finder
作者: 林伯亮
Lin, Po-Liang
關鍵字: 反應式
reactive
機器人
導航
系統
行為
優先權
協調
仲裁
路徑規畫
雷射測距儀
轉向
巡航
目標搜尋
直方圖
robot
navigation
system
behavior based
priority based
behavior coordination
path planning
Laser Range Finder
LRF
Laser Measurement System
LMS
arbitrator
corner turning
wandering
goal seeking
seeker
histogram
出版社: 電機工程學系所
引用: [1] J. Borenstein, and Y. Koren, “The vector field histogram-Fast obstacle avoidance for mobile robots,” IEEE Trans. Robot. Autom., vol. 7, no. 3, pp.278-287, June 1991. [2] J. Borenstein, “Histogrammic in motion mapping for mobile robot obstacle avoidance,” IEEE Trans. Robot. Autom., vol. 7, no. 4, pp.535-539, Aug. 1991. [3] D. Bell, S. Levine, Y. Koren, L. Jaros, and J. Borenstein, “An assistive navigation system for wheelchairs based upon mobile robot obstacle avoidance,” Proc. IEEE Int'l Conference Robot. Autom., New York: IEEE Press, pp.2018-2022, 1994. [4] S. Dongqing, D. Dunlap, and E.G. Collins, "A Comparison Between a Fuzzy Behavioral Algorithm and a Vector Polar Histogram Algorithm for Mobile Robot Navigation," Computational Intelligence in Robot. Autom., CIRA 2007, pp.260-265, June 2007. [5] W. Li, and X. Fun, “Behavior fusion for robot navigation in uncertain environments using fuzzy logic,” Proc.of the 1994 IEEE Int'l Conference on Robot. Autom, vol. 2, pp1790-1796, April 1994. [6] D. An, and H. Wang, “VPH: A New Laser Radar Based Obstacle Avoidance Method for Intelligent Mobile Robots,” in 5th World Congress on Intelligent Control and Autom., Hangzhou, China, pp. 4681-4685, June 2004. [7] L. McFetridge, and M.Y. Ibrahim, “The Self-tuning Agoraphilic controller for Mobile Robot Navigation,“ ln Mechatronics and Machine Vision in Practice, Research Studies Press Ltd., Hervey Bay, QLD, Australia, pp22g234, Sep 2000. [8] L. McFetridge, and M.Y. Ibrahim, "Behavior fusion via free-space force shaping," Industrial Technology, 2003 IEEE Int'l Conference, vol.2, pp.818-813, May 2005. [9] H. Kim, K. Lee, K. Ryu, M. Park, "Navigation control of mobile robot using distance profile histogram," Intelligent Robots and Systems ''96, IROS 96, vol.2, pp.949-956, Nov 1996. [10] H. Kim, K. Lee, S. Lee, and M. Park, "Obstacle avoidance navigation using a local path planning method," Decision and Control, 1996., Proc. of the 35th IEEE, vol.1, pp.869-874, Dec 1996. [11] J. Minguez, and L. Montano, “Nearness diagram navigation(ND): A new real time collision avoidance approach,” in Proc. IEEE/IROS2000 Takamatsu, Japan, pp.2094-2100, 2000. [12] R.C. Arkin. “Behavior-Based Robotics,” MIT Press, Cambridge, MA, 1998. [13] R.A. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal of Robot. Autom., vol.2, no.7, pp.14-23, 1986. [14] D. Toal, C. Flanagan, C. Jones, and B. Strunz, “Subsumption Architecture for the Control of Robots,” University of Limerick, 1996. [15] B.H. Krogh, “A generalized potential field approach to obstacle avoidance,” Robotics Research: The Next Five Years and Beyond, 1984, Bethlehem, PA. [16] R. Huq, G.K.I. Mann, and R.G. Gosine, “Behavior-modulation technique in mobile robotics using fuzzy discrete event system,” IEEE Trans. Robot., vol.22, pp.903-916, Oct 2006. [17] R. Huq, G.K.I. Mann, and R.G. Gosine, “Fuzzy discrete event system based behavior modulation in mobile robotics,” Intelligent Robots and Systems, 2005. (IROS 2005), pp. 2241-2246, Aug 2005. [18] P. Pirjanian, “Behavior coordination mechanisms - state-of-the-art,” Tech Report IRIS-99-375, Institute for Robot. and Intelligent Systems, University of Southern California, Los Angeles, California, 1999. [19] S.G. Goodridge, and M.G. Kay, “Multi-layered fuzzy behavior fusion for reactive control of Autonomous robots,” in D. Driankov and A. Saffiotti, ed., Fuzzy Lopic Techniques for Autonomous Vehicle Navigation, Physica-Verlag, Heidelberg, New York, pp.179-204, 2001. [20] A. Saffiotti, R.H. Ruspini, and K. Konolige, “Blending reactivity and goal-directedness in a fuzzy controller,” In Proc. of the Second IEEE Conference on Fuzzy Systems, San Francisco, CA, pp. 134-139, 1993. [21] P. Pirjanian, and M. Mataric, “Multirobot target acquisition using multiple objective behavior coordination,” in Proc. 2000 IEEE Int'l Conference Robot. Autom., San Francisco, CA, pp.2696-2702, Apr. 24-28, 2000. [22] O. Khatih, “Real-time obstacle avoidance for manipulators and mobile robots,” in IEEE Int'l Conference on Robot. Autom., St. Louis, MO., pp. 500-505, 1985. [23] S. Berman, Y. Edan, and M. Jamshidi, “A foraging group of autonomous, mobile robots-implementation of hierarchical fuzzy behavior-based control,” Electrical and ELectronic Engineers in Israel, 2000. The 21st IEEE Convention, Israel, pp.285-288, April 2000 [W-1] http://www.irobot.com [W-2] http://en.wikipedia.org/wiki/Automated_Guided_Vehicle [W-3] http://en.wikipedia.org/wiki/Motion_planning [W-4] http://robots.mobilerobots.com [W-5] http://www.sickusa.com
摘要: 這篇論文展示了一種新的機器人導航系統,它被設計用來導引機器人在未知環境中移動,所使用的感測資料是藉由高精確度的雷射測距儀所取得。一種以反應式行為模式為基礎的架構被用於建置這個系統,許多不同功能的行為元件被實做出來並被配置到這個架構中,並輔以一種原理雖然簡單卻有用的優先權式的行為協調機制。在這個架構下,三個主要的導航機制被實現出來:第一,一種利用距離直方圖擷取環境特徵的轉角轉向機制。第二,一種具備了障礙物閃避與自由空間搜尋的巡航機制;這個機制還經由一些實驗的結果做了改進。第三,一種目標搜尋機制,它是基於原來的巡航機制再外加上目標搜尋的功能,所以在目標搜尋的過程,它依然具有障礙物閃避的能力;此外,一個特製的速度控制機制被加入,以期在任何情況下都能接觸到使用者設定的目標點。除了這些導航機制的原理介紹,每個導航機制也都做了一些模擬測試,以評估它對周遭環境的反應能力。最後所有的模擬測試都顯示出在未知環境下這是一個符合需求的導航系統。對於未來有興趣在這個題目上繼續深入的研究人員,本文作者在文章最後也建議了一些可能的研究方向供參考。
This thesis presents a new robot navigation system which is designed to navigate a robot to move in an unknown environment. A laser range finder is used to get the sensory data from the surrounding environment of the robot; it is extremely accurate if compares with other range finders such as the sonar. A behavior-based architecture is used for constructing a framework of this system, and then a number of behaviors with specific functions are implemented and attached to this framework. A simple, yet useful behavior coordination mechanism called priority-based coordination is deployed for this behavior-based architecture. This system implements three mechanisms for navigating the robot. The first, a corner turning mechanism based on the feature extraction of a polar-distance histogram is purposed. The second, a wandering mechanism which combines obstacle avoidance and free space seeking is purposed, and then it has been enhanced according to the observations of some experiments. The third, a goal seeking mechanism which can be used for navigating a robot to approach a goal point without any collision. Each mechanism is evaluated by some experiments for demonstrating its ability to react with the environment. Finally, the evaluation results all show that this navigation system is suitable for navigating a robot in an unknown environment. At the end of this thesis, some suggestions are purposed for the researchers who are interesting on the extend studies of this system.
URI: http://hdl.handle.net/11455/8443
其他識別: U0005-0707200922194100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0707200922194100
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.