Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8467
標題: 應用於嬰幼兒監護系統之臉部特徵點偵測與臉部表情辨識演算法設計與實作
Design and Implement of Facial Features Detection and Facial Expression Recognition Algorithm for Baby Watch and Care System
作者: 胡正宏
Hu, Jheng-Hong
關鍵字: Facial Features Detection and Facial Expression Recognition
臉部特徵點偵測與臉部表情辨識
出版社: 電機工程學系所
引用: [1] Yepeng Guan, “Robust Eye Detection from Facial Image based on Multi-cue Facial Information”, Control and Automation, 2007. ICCA 2007. IEEE International Conference on May 30 2007-June 1 2007, pp. 1775 – 1778. [2] Z. F. Liu, Z. S. You, A. K. Jain, and Y. Q. Wang, “Face detection and facial feature extraction in color image”, Fifth International Conference on Computational Intelligence and Multimedia Applications, 2003, pp. 126-130. [3] R. L. Hsu, A. M. Mohamed, and A. K. Jain, “Face Detection in Color Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 24, No. 5, 2002, pp. 696-706. [4] O.Ikeda, “Segmentation of faces in video footage using HSV colour for face detection and image retrieval”, In IC IP 2003, pp. 913-916. [5] S.Srisuk and W. Kumtach, “Fast detection of scalable and multiple human faces”, In Proc. Int. Conf. Intelligence 2000, Bangkok, Ihailand, pp. 351-357. [6] P.Campadelli, R. Lanzarotti and G. Lipori, “Face detection in colour images of generic scenes” ,In CIHSPS 2004, Venice, Italy, pp. 97-103. [7] S.Jin and K.Hanseok, “Face detection using support vector domain description in colour images”, In ICASSP 2004, vol.5, pp. 729-732. [8] X.He, Z-M. Lin and J-L. Zhou, “Real-time human face detection in colour image”, In 2003 Int. Conf.Machine Learning and Cybernetics, vol.5, pp. 2915-2920. [9] Nallaperumal K.,Subban R., Krishnaveni K., Fred L., Selvakumar R.K., “Human face detection in color images using skin color and template matching models for multimedia on the Web”, Wireless and Optical Communications Networks, 2006 IFIP International Conference on 0-0 0 , pp. 5–5. [10] J. Miao, B. Yin, K. Wang, L. Shen, and X. Chen, “A hierarchical Multiscale and Multiangle System for Human Face Detectoin in a Complex Background Using Gravity-Center Template,” Pattern Recognition , 1999, vol.32, pp. 1237-1248. [11] S.Birchfield, “An Elliptical Head Tracker”, Conf.Record of the Asilomar Conf. on Signals, Systems & Computers, 1997 November, vol.2, pp. 1710-1714. [12] S.Birchfield, “An Elliptical Head Tracker Using Intensity Gradients and Color Histograms”, Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, June 1998, pp. 232-237. [13] Jong Min Lee, Jae Hyup Kim, Young Shik Moon, “Face Extraction Method Using Edge Orientation and Face Geometric Features”, Convergence Information Technology, 2007. International Conference on 21-23 Nov. 2007, pp. 1292 – 1297. [14] Quan YUAN, Wen GAO, Hongxun YAO, “Robust frontal face detection in complex environment”, Pattern Recognition,2002,Proceedings. 16th International Conference on, Aug.2002, Volume:1, 11-15, pp. 25-28. [15] CC. Han, H.Y. Liao, G.J. Yu, and L.H. Chen, “Fast face detection via morphology-based pre-processing ”, Pattern Recognition, 2000, Vol.33, pp. 1707-1712. [16] Cheol Hun Han, Kwee-Bo Sim,” Real-time face detection using AdaBoot algorithm”, Control, Automation and Systems, 2008. ICCAS 2008. International Conference on 14-17 Oct. 2008, pp. 1892 – 1895. [17] Monhi M., Torkamani-Azar F.,” Fast invariant face detection in video frames” Control & Automation, 2007. MED ''07. Mediterranean Conference on 27-29 June 2007, pp.1 – 4. [18] Christophe Garcia, Manolis Delakis, “A neural architecture for fast and robust face detection”, Pattern Recognition, 2002. Proceedings. 16th International Conference on Volume:2, 11-15, pp. 44-47,. [19] H.A. Rowley, S. Baluja, T.Kanade, “Neural network-based face detection, “IEEE Trans. Pattern Analysis and Machine Intelligence, Jan.1998, vol.20, no.1, pp. 22-39. [20] Wen-Tao Wang, Chao Xu, Hong-Wei Shen, “Eye localization based on hue image processing”, Intelligent Signal Processing and Communication Systems, 2007. ISPACS 2007. International Symposium on Nov. 28 2007-Dec. 1 2007 pp. 730 – 733. [21] Dargham J.A., Chekima A., “Lips Detection in the Normalised RGB Colour Scheme”, Information and Communication Technologies, 2006. ICTTA ''06. 2nd Volume 1, 0-0 0 pp. 1546 – 1551. [22] Rein-Lien Hsu, Abdel-Mottaleb. M., Jain, A.k., “Face Detection in Color Images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2002, Vol.24, Issue:5, pp.696-706. [23] Yao, Hongxun and Wen Gao, “Face Detection and Location Based on Skin Chrominance and Lip Chrominance Transformation From Color Images”, Pattern Recognition, 2001, Vol.34, number 8, pp. 1555-1564. [24] Hongo H., Murata A., Yamamoto K.,”Consumer products user interface using face and eye orientation”, ISCE ''97 - Proceedings of 1997 IEEE International Symposium on Consumer Electronics 2-4 Dec. 1997, pp. 87 – 90. [25] Jeonghee Park, Jungwon Seo, Dongun An, Seongjong Chung, “Detection of Human Faces Using Skin Color and Eyes”, IEEE International Conference on Multimedia and Expo.2000, Vol.1,pp.133-136. [26] Ying-li Tian, Takeo Kanade and Jeffrey F.Cohn, “Evaluation of Gabor-Wavelet-based Facial Action Unit Recognition in Image Sequences of Increasing Complexity”, International Conference on Face and Gesture, 2002, pp. 218-223. [27] Y.Tian, T.Kanade and J. Cohn, “Recognizing action units for facial expression analysis”, IEEE Transaction on Pattern Analysis and Machine Intelligence, ,February 2001, 23(2):1-19. [28] T. Kanade, J. Cohn and Y. Tian, ”Comprehensive database for facial expression analysis”, Proc. Int’l Conf. Mar. 2000, Face and Gesture Recognition, pp. 46-53. [29] J.-J.J. Lien, T. Kanade, J.F. Cohn, and C.C.Li, ”Detecion,Tracking,and classification of action units in facial expression”, J. Robotics and Autonomous System, 2000, vol. 31, pp. 131-146. [30] Gonzalez and Woods, ”Digital Image Processing 2nd Edition (DIP/2e)”,2002. [31] 周政宏,”神經網路理論與實務”,松崗電腦圖書資料股份有限公司,1995。 [32] 王進德,”類神經網路與模糊控制理論入門與應用”,全華圖書股份有限公司,2008。 [33] 葉怡成,”類神經網路模式應用與實作”, 儒林出版社,1995。
摘要: 現今社會,少子化現象越來越嚴重,加上父母親工作繁忙,對於嬰幼兒的安全監護要求大大提高,因此發展智慧型嬰幼兒監護系統技術,可以提升嬰幼兒於室內環境及居家環境的安全性。 在本研究中,我們由嬰幼兒表情來判別嬰幼兒是否處於安全的狀態下,對於嬰幼兒表情的辨識,主要辨識無表情、笑、哭等三種表情。首先將影像中嬰幼兒的人臉擷取出來,追蹤此人臉區域,接下來把臉部區域14個特徵點偵測出;此14個特徵點分別為眼睛8個特徵點、嘴巴4個特徵點、眉毛2個特徵點,藉由這些特徵點計算出特徵距離,並將這些特徵距離當成輸入類神經系統的特徵值,即可辨識出嬰幼兒的表情。 本論文中的特徵點偵測部份,可克服不同環境色溫下的問題,不會因為燈光色溫偏紅、偏黃或其他色溫而造成偵測錯誤。對於嬰幼兒的特徵點偵測不僅能使用在亞洲膚色人種的嬰幼兒上,也可對於不同人種、不同膚色的嬰幼兒進行特徵點偵測,如白種人或黑種人嬰幼兒等,也都適用於本系統。 本論文中也會提到另外二種實驗過的偵測特徵點方法,第一種為適應性顏色分析偵測法,第二種為快速橢圓樣板邊緣偵測法,並且會將此二種方法與本論文主要的方法眼睛濾波器偵測法方法做比較,比較其特徵點偵測結果的準確率與運算速度,並且分析它們的優缺點。
Nowadays, because of the low-birth rate and busy working parents, the security of babies is more and more requested. Therefore, the development of wisdom baby watch and care system technology can promote the baby security of indoor and house environments. In this study, we will figure out whether babies are in the safe condition or not by baby facial expressions. According to facial expressions recognition, there are three conditions, which include deadpan, smiling, and crying. First, we extract baby's face from the image and trace the face. Then detecting fourteen features on the face, where eight features for eyes, four features for mouth, and two features for eye brows. The features distance will be calculated by the features and they will be as input values to the neural network system. Thus, the scheme can recognize baby facial expressions. In this thesis, the features detection part can solve the problem of color temperature in different environments. The light with red temperature, yellow temperature or other color temperature will not result in the detecting mistake. By the baby features, the detection can be used not only to Asian babies, but also to other racial babies. Therefore, this system is capable of being used to Caucasian or Africa America babies. Besides, we will discuss two experimented features detection methods in this study. One is Adaptive Color Analysis Detection Method, and the other is Fast Ellipse Template Edge Detection Method. Compare the two methods with Eye Filter Detection Method in this study, we will see the accuracy and operation speed of the detection results and we also analyze the advantages and drawbacks.
URI: http://hdl.handle.net/11455/8467
其他識別: U0005-1108200918034000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108200918034000
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.