Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8472
標題: 具有矽碳合金應力源的應變矽N型金氧半場效電晶體效能增強之模擬研究
A Comprehensive Simulation Study of Performance Enhancement in Strained Silicon NMOSFETs Featuring Silicon-Carbon Alloy Source/Drain Stressors
作者: 黃仕澔
Huang, Jacky
關鍵字: silicon-carbon alloy
矽碳合金
strained Si
mobility
應變矽
遷移率
出版社: 電機工程學系所
引用: Reference Chapter 1 [1] K. Rim, J. Chu, H. Chen, K.A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H.-S. Wong, ”Characteristics and device design of sub-100-nm strained-Si N- and PMOSFETs”, Symp VLSI Tech., pp. 98, 2002. [2] H. C.-H. Wang, Y.-P. Wang, S.-J. Chen, C.-H. Ge, S. M. Ting, J.-Y. Kung, R.-L. Hwang, H.-K. Chiu, L. C. Sheu, P.-Y. Tsai, L.-G. Yao, S.-C. Chen, H.-J. Tao, Y.-C. Yeo, W.-C. Lee, and C. Hu, ”Substrate-strained silicon technology: process integration”, IEDM Tech. Dig., pp. 61, 2003. [3] S. Ito, H. Namba, K. Yamaguchi, T. Hirata, K. Ando, S. Koyama, S. Kuroki, N. Ikezawa, T. Suzuki, T. Saitoh, T. Horiuchi, ”Mechanical stress effect of etch-stop nitride and its impact on deep submicrometer transistor design”, IEDM Tech. Dig., pp. 247, 2000. [4] C.-H. Ge, “Process-Strained-Si (PSS) CMOS technology featuring 3-D strain engineering”, IEDM Tech. Dig., pp. 73, 2003. [5] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, M. Bohr, ”A 90-nm high volume manufacturing logic technology featuring novel 45-nm gate length strained silicon CMOS transistors”, IEDM Tech. Dig., pp. 978, 2003. [6] K.-W. Ang, K.-J. Chui, V. Bliznetsov, A. Du, N. Balasubramanian, G. Samudra, M. F. Li, and Y.-C. Yeo, “Enhancement performance in 50 nm N-MOSFETs with silicon-carbon source/drain regions,” IEDM Tech. Dig., 2004, pp. 1069-1071. [7] K.-W. Ang, K.-J. Chui, V. Bliznetsov, Y. Wang, L.-Y. Wong, C.-H. Tung, N. Balasubramanian, M. F. Li, G. S. Samudra, and Y.-C. Yeo, “Thin body silicon-on-insulator N-MOSFET with silicon-carbon source/drain regions for performance enhancement,” in IEDM Tech. Dig., 2005, pp. 503-506. [8] Kah-Wee Ang, King-Jien Chui, Hock-Chun Chin, Yong-Lim Foo, Anyan Du, Wei Deng, Ming-Fu Li, Ganesh Samudra, N. Balasubramanian, and Yee-Chia Yeo. “50 nm Silicon-On-Insulator N-MOSFET Featuring Multiple Stressors: Silicon-Carbon Source/Drain Regions and Tensile Stress Silicon Nitride Liner,” Symp VLSI Tech., pp.90-91, 2006. [9] B.F. Yang, K. Nummy, A. Waite, L. Black, H. Gossmann, H. Yin, Y. Liu, B. Kim, S. Narasimha, P. Fisher, H.V. Meer, J. Johnson, D. Chidambarrao, S.D. Kim, C. Sheraw, D. Wehella-gamage, J. Holt, X. Chen, D. Park, C.Y. Sung, D. Schepis, M. Khare, S. Luning, P. Agnello, “Stress dependence and poly-pitch scaling characteristics of (110) PMOS drive current”, VLSI Tech. Dig., pp. 126-127, 2007. [10] B. Yang, R. Takalkar, Z. Ren, L. Black, A. Dube, J.W. Weijtmans, J. Li, J.B. Johnson, J. Faltermeier, A. Madan, Z. Zhu, A. Turansky, G. Xia, A. Chakravarti, R. Pal, K. Chan, A. Reznicek, T.N. Adam, J.P. de Souza, E.C.T. Harley, B. Greene, A. Gehring, M. Cai, D. Aime, S. Sun, H. Meer, J. Holt, D. Theodore, S. Zollner, P. Grudowski, D. Sadana, D.-G. Park, D. Mocuta, D. Schepis, E. Maciejewski, S. Luning, J. Pellerin, E. Leobandung, “High-performance nMOSFET with in-situ phosphorus-doped embedded Si:C (ISPD eSi:C) source-drain stressor”, IEDM Tech. Dig., pp. 51-54, 2008. [11] S.S. Chung, E.R. Hsieh, P.W. Liu, W.T. Chiang, S.H. Tsai, T.L. Tsai, R.M. Huang, C.H. Tsai, W.Y. Teng, C.I. Li, T.F. Kuo, Y.R. Wang, C.L. Yang, C.T. Tsai, G.H. Ma, S.C. Chien, S.W. Sun, ” Design of high-performance and highly reliable nMOSFETs with embedded Si:C S/D extension stressor(Si:C S/D-E)”, VLSI Tech. Dig., pp. 158-159, 2009. [12] Ren Zhibin, G. Pei, J. Li, B.F. Yang, R. Takalkar, K. Chan, G. Xia, Z. Zhu, A. Madan, T. Pinto, T. Adam, J. Miller, A. Dube, L. Black, J.W. Weijtmans, B. Yang, E. Harley, A. Chakravarti, T. Kanarsky, R. Pal, I. Lauer, D.-G. Park, D. Sadana, ” On implementation of embedded phosphorus-doped SiC stressors in SOI nMOSFETs”, VLSI Tech. Dig., pp. 172-173, 2008. [13] S.S. Chung, Y.R. Liu, C.F. Yeh, S.R. Wu, C.S. Lai, T.Y. Chang, J.H. Ho, C.Y. Liu, C.T. Huang, C.T. Tsai, ” A new observation of the germanium outdiffusion effect on the hot carrier and NBTI reliabilities in sub-100nm technology strained-Si/SiGe CMOS devices”, VLSI Tech. Dig., pp. 86-87, 2005. [14] S.S. Chung, E.R. Hsieh, D.C. Huang, C.S. Lai, C.H. Tsai, P.W. Liu, Y.H. Lin, C.T. Tsai, G.H. Ma, S.C. Chien, S.W. Sun, ” More strain and less stress- the guideline for developing high-end strained CMOS technologies with acceptable reliability”, IEDM Tech. Dig., pp. 435-438, 2008. [15] P.W. Liu, T.F. Kuo, C.I. Li, Y.R. Wang, R.M. Huang, C.H. Tsai, C.T. Tsai, G.H. Ma, ” Dopant and thermal interaction on SPE formed SiC for NMOS performance enhancement”, VLSI-TSA, pp.24-25, 2009. Chapter 2 [1] J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron mobility enhancement in strained-Si N-type metal-oxidesemiconductors field-effect transistors”, IEEE Electron Device Lett., vol.15, pp.100-102, Feb.1994. [2] K. Rim, S. Koester, M. Hargrove, J. Chu, P. M. Mooney, J. Ott, T. Kanarsky, P. Ronsheim, M. Ieong, A.Grill, and H.-S P. Wong, “Strained Si NMOSFETs for high performance CMOS technology”, 2001 Symp. VLSI Technology, Dig. Technical Papers, pp. 59-60. [3] A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka, “Local mechanical-stress control (LMC): A new technique for CMOS-performance enhancement”, Technical Dig. International Electron Device Meeting, Dec. 2001, Washington DC, pp. 433-436. [4] C.-H. Ge, C.-C. Lin, C.-H. Ko, C.-C. Huang, Y.-C. Huang, B.-W. Chan, B.-C. Perng, C.-C. Sheu, P.-Y.Tsai, L.-G. Yao, C.-L. Wu, T.-L. Lee, C.-J. Chen, C.-T. Wang, S.-C. Lin, Y.-C. Yeo, and C. Hu, “Process-strained Si (PSS) CMOS technology featuring 3D strain engineering”, Technical Dig. International Electron Device Meeting, Dec. 2003, Washington DC, pp. 73-76. [5] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors”, Technical Dig. International Electron Device Meeting, Dec. 2003,Washington DC, pp. 978-980. [6] S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Ma, B.Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, “A logic nanotechnologyfeaturing strained-silicon”, IEEE Elect. Dev. Lett. 25, pp. 191 (2004). [7] Kah Wee Ang, King Jien Chui, Bliznetsov V., Anyan Du, Balasubramanian N., Ming Fu Li, Ganesh Samudra, Yee-Chia Yeo, “Enhanced Performance in 50 nm N-MOSFETs with Silicon-Carbon Source/Drain Regions,” IEDM Technical Digest, Washington, D.C., USA, December (2004), p.12. [8] TCAD tools-SentaurusUser's manual. [9] Y. Kanda, “A Graphical Representation of the Piezoresistance Coefficients in Silicon”, IEEE Transactions on Electron Devices 29(1), 64 (1982). [10] J.L. Egley and D. Chidambarrao, “Strain effects on device characteristics: implementation in drift-diffusion simulators”, Solid-State Electronics 36(12), 1653 (1993). [11] Y. Kumagai, H. Ohta, H. Miura, F. Ito, K. Maekawa and A. Shimizu, “Evaluation of Change in Drain Current due to Strain in 0.13-μm-Node MOSFETs”, International Conf. On Solid State Devices and Materials, Nagoya, Japan, Sep. (2002) p.14. [12] International Technology Roadmap for Semiconductors (2004 update); available at http://public.itrs.net Chapter 3 [1] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. Mclntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson and M Bohr, “A 90-nm high volume manufacturing logic technology featuring novel 45-nm gate length strained silicon CMOS transistors”, IEDM Tech. Dig. 2003, 978-80. [2] Yaocheng Liu, Gluschenkov O., Jinghong Li, Madan A., Ozcan A., Byeong Kim, Dyer T., Chakravarti A., Chan K., Lavoie C., Popova I., Pinto T., Rovedo N., Zhijiong Luo, Loesing R., Henson W., Ken Rim, “Strained Si Channel MOSFETs with Embedded Silicon Carbon Formed by Solid Phase Epitaxy”, Symp VLSI Tech 2007, 44-5. [3] Y.-C. Yeo, “Enhancing CMOS transistor performance using lattice mismatched materials in source/drain regions”, Semiconductor Science and Technology, 2007, vol. 22, S177-182. [4] Synopsys TCAD Tools: Sprocess and Sdevice User's manuals, 2006. [5] Kah-Wee Ang, King-Jien Chui, Vladimir Bliznetsov, Chih-Hang Tung, Anyan Du, Narayanan Balasubramanian, Ganesh Samudra, Ming Fu Li, and Yee-Chia Yeo, “Lattice strain analysis of transistor structures with silicon-germanium and silicon-carbon source/drain stressors”, Applied Phy. Lett. 2005, Vol.86, 093102-1-3. [6] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys”, J. Appl. Phys., vol. 80, no. 4, pp. 2234-2252, 1996. [7] Ungersboeck E, Dhar D, Karlowatz G, Sverdlov V, Kosina H, Selberherr S., “The Effect of General Strain on the Band Structure and Electron Mobility of Silicon”, IEEE Trans. Electron Device 2007, vol. 54, pp. 2183-2190. [8] S. E. Thompson, G. Sun, K. Wu, J. Lim, and T. Nishida, “Key Differences For Process-induced Uniaxial vs. Substrate-induced Biaxial Stressed Si and Ge Channel MOSFETs”, IEDM Tech Dig 2004, pp. 221. [9] J. L. Egley and D. Chidambarrao, “Strain effects on device characteristics: implementation in drift-diffusion simulation,” Solid-State. Elec., vol. 36, pp. 1653-1664, 1993. [10] BirGL and G. E. Pikus GE. Symmetry and Strain-Induced Effects in Semiconductors ed. Wiley, New York. 1974, pp.321. [11] M. J. Van Dort, P. H. Woerlee, and A. J. Walker, “A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions”, Solid-State. Elec., vol. 37, pp.411-414, 1994. [12] Takashino H, Okagaki T, Uchida T, Hayashi T, Tanizawa M, Tsukuda E, Eikyu K, Wakahara S, Ishikawa K, Tsuchiya O, and Inoue Y., “Impact of Shear Strain and Quantum Confinement on <110> Channel nMOSFET with High-Stress CESL”, Simulation of Semiconductor Processes and Devices, 2007, vol. 12, 105-108. Chapter 4 [1] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. Mclntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson and M Bohr, “A 90-nm high volume manufacturing logic technology featuring novel 45-nm gate length strained silicon CMOS transistors”, IEDM Tech. Dig. 2003, 978-80. [2] Yee-Chia Yeo, “Enhancing CMOS transistor performance using lattice mismatched materials in source/drain regions”, Semicond Sci Technol 2007, vol.22, pp.S177-82. [3] ANSYS User's manuals, 2006. [4] Synopsys TCAD Tools: Sprocess and Sdevice User's manuals, 2006. [5] Yaocheng Liu, Gluschenkov O., Jinghong Li, Madan A., Ozcan A., Byeong Kim, Dyer T., Chakravarti A., Chan K., Lavoie C., Popova I., Pinto T., Rovedo N., Zhijiong Luo, Loesing R., Henson W., Ken Rim, “Strained Si Channel MOSFETs with Embedded Silicon Carbon Formed by Solid Phase Epitaxy”, Symp on VLSI Tech Dig 2007, pp. 44. [6] Boykin TB, Klimeck G, and Oyafuso F, “Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization”, Phys. Rev. B 2004, vol. 69, pp.115201. [7] S. E. Thompson, G. Sun, K. Wu, J. Lim, and T. Nishida, “Key Differences For Process-induced Uniaxial vs. Substrate-induced Biaxial Stressed Si and Ge Channel MOSFETs”, IEDM Tech Dig., 2004, pp. 221. [8] J. L. Egley and D. Chidambarrao, “Strain effects on device characteristics: implementation in drift-diffusion simulation,” Solid-State. Elec., vol. 36, pp. 1653-1664, 1993. [9] Bir GL and Pikus GE. Symmetry and Strain-Induced Effects in Semiconductors ed. Wiley, New York. 1974, 321. [10] M. J. Van Dort, P. H. Woerlee, and A. J. Walker, “A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions”, Solid-State. Elec., vol. 37, pp.411-414, 1994. [11] H. Takashino, T. Okagaki, T. Uchida, T. Hayashi, M. Tanizawa, E. Tsukuda, K. Eikyu, S. Wakahara, K. Ishikawa, O. Tsuchiya and Y. Inoue, “Impact of Shear Strain and Quantum Confinement on <110> Channel nMOSFET with High-Stress CESL”, Simulation of Semiconductor Processes and Devices, 2007, vol.12, pp.105-108. [12] F.M. Buflera,b, F.O. Heinzb, A. Tsibizovb, and M. Oulmaneb, “Simulation of <110> nMOSFETs with a Tensile Strained Cap Layer”, ECS Transactions, 2008, 16(10), pp.91-100. [13] Tzu-Juei Wang, Chih-Hsin Ko, Shoou-Jinn Chang, San-Lein Wu, Ta-Ming Kusn, and Wen-Chin Lee, “The Effects of Mechanical Uniaxial Stress on Junction Leakage in Nanoscale CMOSFETs”, IEEE Tran. Electron Devices, vol. 55, No.2, pp. 572-577, 2008. Chapter 5 [1] http://www.semiconductor.net/blog/Chipworks_Inside_Angle/23620-Intel_s_32_nm_Clarkdale_Shows_Many_Changes.php
摘要: 在本篇論文之中,主要探討矽碳合金應力源對應變矽金屬氧化半導體電晶體元件特性之影響。我們透過利用商用製程模擬器如ANSYS與Sentaurus來研究通道寬度對具有矽碳合金應力源(S/D stressor)及CESL(SiN覆蓋層)之N型電晶體場效體通道內應力場的分佈之影響。分析發現金氧半場效電晶體寬度在寬的width時,發現沿傳輸方向的應力主導整個遷移率增益,而沿寬度方向的應力對電流影響不大,但是,沿垂直方向的壓縮應力對遷移率增益有其影響性,不可以被忽略。在width小的時候,沿垂直方向的應力會減少,造成遷移率的增益降低。此外,我們也利用k.p能帶計算與商用TCAD軟體來分析在不同寬度元件內應力分佈對能帶結構、遷移率與、驅動電流增益的關係與影響。
In this dissertation, the author used commercial process simulators, including ANSYS and Sentaurus/SPROCESS to study stress distributions in the strained silicon (Si) channel regions of silicon-carbon alloy source/drain and stressed silicon nitride liner NMOSFETs. Mobility and drive current enhancement were found to be dominated by the tensile stress along the transport direction, and by the compressive stress along the growth direction in wide devices. Stress along the width direction was found to have the least effect on the drain current in wide sample slightly degrading the mobility and drive current gain in the narrow width regime. The compressive stress along the growth direction, perpendicular to the gate oxide, contributes significantly to mobility and drive current enhancement and cannot be neglected in nanoscale strained Si NMOSFETs. This paper used k.p method and commercial TCAD tools to analyze the impact of width on performance improvements such as band structure, mobility and drive current.
URI: http://hdl.handle.net/11455/8472
其他識別: U0005-1202201015572900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1202201015572900
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.