Please use this identifier to cite or link to this item:
標題: 俱備減壓架構之90奈米壓控振盪器
Design and Implementation of 90-nm Voltage Control Oscillator with Stress Relieved Topology
作者: 洪宗揚
Hung, Tsung-Yang
關鍵字: VCO
phase noise
出版社: 電機工程學系所
引用: [1] T. H. Lee, H. Samavati, and H. R. Rategh, “5-GHz CMOS wireless LANs,” IEEE Trans. Microwave Theory Tech, vol. 48, no. 1, pp. 268-280, Jan. 2002. [2] H. R. Rategh, H. Samavati, and T. H. Lee, “A CMOS frequency synthesizer with an injection-locked frequency divider for a 5-GHz wireless LAN receiver”, IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 780-787, May 2000. [3] T. Liu, and E. Westerwick, “5-GHz CMOS radio transceiver front-end chipset”, IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1927-1933, Dec. 2000. [4] IEEE Std 802.11a, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Computer Society, 1999. [5] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998. [6] T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, pp. 326-336, Mar. 2000. [7] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331-343, Mar. 1996. [8] A.Hajimiri and T.H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp.717-214, May 1999. [9] H. Wang, A.Hajimiri and T.H. Lee, “Correspondence: comments on "Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 35, pp.286-287, Feb. 2000. [10] A. Hajimiri, and T.H. Lee, “The design of low noise oscillators,” Kluwer Academic Publishers, 1999. [11] C.M. Hung, N. Barton, M.C. Lee, D. Leipold "An ultra low phase noise GSM local oscillator in a 0. 09-μm standard digital CMOS process with no High-Q Inductors" IEEE Radio Frequency Integrated Circuits Symposium, pp. 483-486, June 2004 [12] J Kucera, BU Klepser " 3.6GHz VCOs for multi-band GSM transceivers" Solid-State Circuits Conf. 27th European 2001 [13] C.M. Hung, B. A. Floyd, Kenneth K.O " A fully integrated 5.35GHz CMOS VCO and prescaler" IEEE Transactions on Microwave Theory and Techniques, vol,49 pp. 17- 22 Jan. 2001 [14] C. Yu; J.S. Yuan “MOS RF reliability subject to dynamic voltage stress -modeling and analysis” IEEE Transaction on electron device, vol,52 No.8 , pp.1751 -1758 Aug. 2005 [15] C.C. Ho, C.W. Kuo, Y.J. Chan “0.13um RF CMOS and varactors performance optimization by multiple gate layouts” IEEE Transactions on Electron Devices, vol. 51, no. 12, pp.2181 Dec. 2004 [16] R.B. Staszewski , P.T. Balsara "All-digital frequency synthesizer in deep-submcron cmos" wiley Interscience [17] J. Craninckx, and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors”, IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736-744, May 1997. [18] B. Park, and P. E. Allen, “Low-power low-phase-noise voltage-controlled oscillator with integrated LC resonator”IEEE International Sym. on Circuits and Systems, vol. 4, pp. 421-424, Jun. 1998. [19] H.M. Wang, “A solution for minimizing phase noise in low-power resonator-based oscillators,” IEEE International Sym. on Circuits and Systems, vol. 3, pp. 53-56, May 2000. [20] T. I. Ahrens, and T. H. Lee, “A 1.4-GHz 3-mW CMOS LC low phase noise VCO using tapped bond wire inductances”, International Sym. on Low Power Electronics and Design, pp. 16-19, Aug. 1998. [21] F. Svelto, and R. Castello, “A bond-wire inductor-MOS varactor VCO tunable from 1.8 to 2.4 GHz,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 1, pp. 403-407, Jan. 2002. [22] F. Svelto, R. Castello, and S. Deantoni, “A 1mA, -120.5 dbc/Hz at 600 kHz from 1.9 GHz fully tuneable LC CMOS VCO,” IEEE Conf. on Custom Integrated Circuits, pp. 577-580, May 2000. [23] J. Craninckx, and M. Steyaert, “A 1.8-GHz CMOS low-phase-noise voltage-controlled oscillator with prescaler,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1474-1482, Dec. 1995. [24] G. Nayak, and P. R. Mukund, “Chip package co-design of a heterogeneously integrated 2.45 GHz CMOS VCO using embedded passives in a silicon package,” Proc. 17th International Conf. on VLSI Design, pp. 627-630, 2004. [25] M. Straayer, J. Cabanillas, and G. M. Rebeiz, “A low-noise transformer-based 1.7 GHz CMOS VCO,” IEEE Conf. Solid-State Circuits, Digest of Technical Papers, vol. 1, pp. 286-287, Feb. 2002. [26] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 10, pp. 446-448, Oct. 2003. [27] A. Worapishet, S. Virunphun, M. Chongcheawchamnan, and S. Srisathit, “A mutual-negative-resistance quadrature CMOS LC oscillator,” Proc. International Symposium on Circuits and Systems, vol. 4, pp. 137-140, May 2004. [28] B.D. Muer, M. Borremans, M. Steyaert, and G. Li Puma, “A 2-GHz low-phase-noise integrated LC-VCO set with flicker-noise up conversion minimization” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp 1034-1038, Jul. 2000. [29] E. Hegazi, H. Sjoland, and A.A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol.36, no.12, pp.1921-1930, Dec. 2001. [29] E. Hegazi, H. Sjoland, and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec 2001. [30] P. Andreani, and H. Sjoland, “Tail current noise suppression in RF CMOS VCOs,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 342-348, Mar. 2002. [31] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966. [32] J. Craninckx, and M.S.J. Steyaert, “Low-noise voltage-controlled oscillator using enhanced LC-tanks,” IEEE Trans. Circuits Sys.-II, vol. 42, no. 12, pp. 794-804, Dec. 1995. [33] P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec. 2002. [34] J.J. Rael, and A.A. Abidi, “Physical processes of phase noise in differential LC oscillators,” Proc. IEEE Custom Integrated Circuits Conf., pp. 569-572, May 2000. [36] G. Sauvage, “Phase noise in oscillators: A mathematical analysis of Leeson's model,” IEEE Trans. on Instrumentation and Measurement, vol IM-26, no. 4, pp. 408-410, Dec. 1977. [37] M.S. McCorquodale, M.K. Ding, and R.B. Brown, “Study and simulation of CMOS LC oscillator phase noise and jitter,” Proc. International Sym. on Circuits and Systems, vol. 1, pp. I-665-I-668, May 2003. [38] F.X. Kaertner, “Determination of the correlation spectrum of oscillators with low noise,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 1, pp. 90-101, Jan. 1989. [39] A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscillators: A unifying theory and numerical methods for characterization,” IEEE Trans. Circuits Syst. I, vol. 47, no. 5, pp. 655-673, May 2000. [40] S.K. Magierowsky, and S. Zukotynsky, “CMOS LC-oscillator phase-noise analysis using nonlinear models,” IEEE Trans. Circuits Syst. I, vol. 51, no. 4, pp. 664-677, Apr. 2004. [41] V. Rizzoli, F. Mastri, and D. Masotti, “A general-purpose harmonic-balance approach to the computation of near-carrier noise in free-running microwave oscillators,” IEEE MTT-S Int. Microwave Symp. Digest, pp. 629-632, Jun. 1993. [42] M. Okumura, and H. Tanimoto, “A time-domain method for numerical noise analysis of oscillators”, in Proc. ASP-DAC, pp. 477-482, Jan. 1997.
摘要: 本論文論述低電壓LC壓控振盪器的理論和實現。首先,介紹壓控振盪器的基本原理和振盪器的分類以及電路的演進。接著,引述線性非時變相位雜訊分析模型作為分析頻域物理特性與元件特性對相位雜訊的巨觀解釋模型,依模型作為在低電壓限制下 電路優化的方向。並引述線性時變相位雜訊分析模型作為電路電性分析時域波型對相位雜訊的微觀模型,以至於為何電源及偏壓電路的雜訊會惡化相位雜訊,並對提升低電壓振盪器的訊號雜訊比及偏壓電路的雜訊隔離的方法之間做分析討論。 第三章,考慮先進製程低壓元件薄氧化層低耐壓特性及元件安全可靠操作區間 調整VCO設計結構使兼具高振幅與高可靠度,並針對5GHz 射頻之頻段,我們使用90nm CMOS製程來實現本論文中2個VCO電路。第一個電路採用薄氧化絕緣層電晶體,頻率5.5GHz結合相位雜訊降低設計技術與減輕超壓效應架構, 第二個採用厚氧化絕緣層電晶體電路為頻率5.5GHz結合相位雜訊降低設計技術與減輕超壓效應架構。 最後透過量測比較這兩種LC壓控振盪器相位雜訊特性及差異 作結論探討作為日後先進製程低壓元件單晶片射頻系統晶片關建參數設計參考。
In this thesis, the theory and implementation of LC Voltage Control Oscillator (VCOs) with stress relieved topology are studied. Firstly, a brief introduction on oscillator theory and class is described. Secondly, two behavior models are proposed to analyze the phase noise, these models explain the thermal and flicker noise contributing to the phase noise of the VCO. Based on previous knowledge of phase noise theory and over stress concerns on low voltage thin oxide device using VCO circuit, a new VCO is redesign in bias circuit to compromise both phase noise and reliability robust performances. Hence, a 90-nm CMOS technology is adopted to implement two VCO designs on 5GHz band. These two VCOs with following characteristics are designed and fabricated. Firstly, they use low phase noise architecture with identical supply voltage to implement VCO. Notably, the difference of these two VCOs is the adoption of thick oxide and thin oxide devices to generate negative resistance. The stress issue of different oxide thickness was characterized between these two VCOs. According to the experience result, the adoption of thick oxide device shows excellent performance by considering both phase noise and reliability issues. Result of this thesis provides a valuable reference during the implementation of VCO in advance technology for RF and Base-Band single chip design.
其他識別: U0005-1908200908493700
Appears in Collections:電機工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.