Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8618
標題: 本質氮化鎵光電化學濕蝕刻研究
Study on the Photoelectrochemical Etching of Intrinsic Gallium Nitride
作者: 邱奕豪
Chiu, Yi-Hao
關鍵字: Photoelectrochemical Etching
光電化學濕蝕刻
Intrinsic Gallium Nitride
本質氮化鎵
出版社: 電機工程學系所
引用: 第一章 [1-1] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes”, Appl. Phys. Lett., vol. 62, no. 19, pp. 2390-2392, 1993. [1-2] S. Nakamura, M. Senoh, S. Nagahata, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys.,vol.35 part2, no. 1b, L74-L76, 1996. [1-3] M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett., vol. 60, no. 23, pp. 2917-2919, 1992. [1-4] C. Haberstroh, R. Helbig, R. A. Stein, “Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R)”, J. Appl. Phys., vol. 76, pp. 509-513, 1997. [1-5] W. V. Muench, I. Pfaffeneder, “Breakdown field in vapor-grown silicon carbide p-n junctions”, J. Appl. Phys., vol. 48, pp. 4831-4833, 1977. [1-6] G. A. Slack, “Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond”, J. Appl. Phys., vol. 35, pp. 3460-3466, 1964. [1-7] B. J. Baliga, “Modern Power Devices”, Wiley, New York 1987. [1-8] 史光國, 半導體發光二極體及固體照明,全華圖書公司, 2006 年 10 月。 [1-9] 陳隆建, 發光二極體之原理與製程,全華圖書公司, 2008 年 6 月。 第二章 [2-1] J. J. Wierer , D. A. Steigerwald , M. R. Krames, J. J. O’Shea , M. J. Ludowise,G. Christenson , Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Go¨ tz,N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett., Vol. 78, No. 22, 28 May 2001. [2-2] A.R. Franklin and R. Newman, “Shaped Electroluminescent GaAs Diodes”, J. Appl. Phys 35,1153, 1964. [2-3] I. Schnitzer, E. Yablonovutch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency form surface textured,thin-film light-emitting diodes”, Appl. Phys. Lett. , 63(16), 18 October 1993. [2-4] S. X. Jin, J. Li, J. Y. Lin, and H. X. Jianga ,“InGaN/GaN quantum well interconnected microdisk light emitting diodes”, Appl. Phys. Lett., Vol. 77, No. 20, 13 November 2000. [2-5] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Consantine, C. Barratt, R. F. karlicek, Jr., C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN”, Appl. Phys. Lett. 69 (8), 19 August 1996. [2-6] J. R. Mileham, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, R. J. Shul, and S, P, Kicoyne, “Wet chemical etching of AlN”, Appl. Phys. Lett. 67, 1119, 1995. [2-7] J. R. Mileham, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, R. J. Shul, and S, P, Kicoyne, “Patterning of AlN, InN, and GaN in KOH-based solutions”, J. Vac. Sci. Technol. A 14, 836, 1996. [2-8] The Electrochemistry of Semiconductors, edited by P. J. Holmes(Academic, New York, 1962). [2-9] T. Kozawa, R. Kachi, T. Ohwaki, Y.Taga, N. Koide, and M. Koike, “Dislocation Etch Pits in GaN Epitaxial Layers Grown on Sapphire Substrates”, J. Electrochem. Soc. 143 L17, 1996. [2-10] J. I. Pankove, “Electrolytic Etching of GaN”, J. Electrochem. Soc., Volume 119, Issue 8, pp. 1118-1119 ,August 1972. [2-11] Mitsugu Ohkubo ,“Effects of Dissolved Oxygen on Anodic Etching of n-Type GaN Films Using a Sodium Hydroxide Electrolyte”, Jpn. J. Appl. Phys. Vol. 36 L955, April 21, 1997. [2-12] M. S. Minsky, M. White, and E. L. Hu,“Room-temperature photoenhanced wet etching of GaN”, Appl. Phys. Lett. 68, 1531 , 12 January 1996. [2-13] C. Youtsey, I. Adesida. And G. Bulman,“Smooth n-type GaN surfaces by photoenhanced wet etching”, Appl. Phys. Lett. 72, 560 , 3 December 1997. [2-14] C. Youtsey, I. Adesida. And G. Bulman,“Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations”, Appl. Phys. Lett. 73, 797, 11 June 1998. [2-15] H. Lu, Z. Wu, and I. Bhat,“Photoassisted Anodic Etching of Gallium Nitride”, J. Electrochem. Soc., Volume 144, Issue 1, pp. L8-L11, January 1997. [2-16] I. Adesida, A. Mahajanm, E. Andideh, M. Asif Khan, D. T. Olson,and J. N. Kuznia, “Reactive ion etching of gallium nitride in silicon tetrachloride plasmasa”, Appl. Phys. Lett. Vol.63 no.20 p.2777, 15 November 1993. [2-17] S. J. Pearton, C. R. Abernathy, F. Ren, J. R. Lothian, P. W. Wisk, and A. Katz,“Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy”, J. Vac. Sci. Technol. A Volume 11, Issue 4, pp. 1772-1775 , July 1993. [2-18] G.F. McLane, L. Casas, S.J. Pearton,and C.R. Abernathy, “High etch rates of GaN with magnetron reactive ion etching in BCl3 plasmas”, Appl. Phys. Lett. Vol.66. p.3328, 12 June 1995. [2-19] I. Adesida, A.T.Ping , C. Youtsey, T.Dow, M. AsifKhan, D.T. Olson, and J.N. Kuznia, “Characteristics of chemically assisted ion beam etching of gallium nitride”, Appl. Phys. Lett. Vol.65 p.889, 15 August 1994. [2-20] 黃聖文,國立清華大學碩士論文 “平臺式氮化鎵異質接面雙載子電晶體研製與分析”2005年10月。 [2-21] Donald A. Neamen, “An Introduction to Semiconductor Devices”, 2006 by The McGraw-Hill Companies,Inc. [2-22] Lei Ma, K. Fareen Adeni, Chang Zeng, Yawei Jin, Krishnanshu Dandu, Yoganand Saripalli, Mark Johnson,and Doug Barlage, “Comparison of Different GaN Etching Techniques”, CS MANTECH Conference, April 24 2006. [2-23] C. Youlsey, L. T. Romano. R. J. Malnar and I. Adesida, Rapid evaluation of dislocation densities in n-type GaN films using photoenhanced wet etching, Appl. Phys. Lett. 74, 3537, 7 JUNE 1999. [2-24] J. M. Hwang, K. Y. Ho, Z. H. Hwang, W. H. Hung, K. M. Lau, and H.-L. Hwang, “Efficient wet etching of GaN and p-GaN assisted with chopped UV source,” Superlatt. Microstruct., vol. 35, no. 1-2, pp. 45–57, Feb. 2004. 第三章 [3-1] C. Youtsey, I. Adesida. And G. Bulman C. Youtsey, I. Adesida. And G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett. 71 (15), 13 October 1997.
摘要: 在這篇論文中,我們探討許多GaN的蝕刻方式,並從其中選擇了間歇性光源輔助化學濕蝕刻法,來進行蝕刻架構設計及實驗。希望最後能將此方法應用於大面積GaN基板上製備圓柱體LED陣列。 從實驗結果顯示,把GaN以間歇性光源輔助化學性濕蝕刻法進行蝕刻,當Laser pulse操作頻率較高時,可以改善蝕刻時試片表面的平坦度。在進行電輔助化學性蝕刻的實驗中,我們發現在外加電流及加熱蝕刻溶液的蝕刻環境,提高KOH濃度且延長蝕刻時間,可以獲得較佳平坦度之蝕刻面。 最後我們針對GaN試片表面在進行間歇性光源輔助化學性濕蝕刻的前後,將試片表面鍍上電極並量測其I-V特性,我們發現未經蝕刻的GaN試片表面其I-V特性呈現蕭基接觸,蝕刻後GaN試片表面的I-V特性呈現歐姆接觸,在經過較長時間蝕刻後GaN試片表面則能與金屬電極產生較小的接觸電阻。
In the essay, we have researched many etched method of GaN. We chose the way of electrodeless photoelectrochemical etching with a chopped UV source to conduct the etching frame design and experiment, we hope we can apply this method on large area GaN chips making cylinder array LEDs. From the experiment showing, using GaN proceed to etch with electrodeless photoelectrochemical etching with a chopped UV source can improve the root-mean-square of the sample surface when the laser pulse's frequence is higher. In making the electrochemical etching experiment, we found at the better root-mean-square of the sample surface in etching when we increase KOH concentration and delay the time under the environment of adding photoassisted anodic and etched solution. In the end, we focus on the GaN's sample surface before and after using electrodeless photoelectrochemical etching with a chopped UV source by plating electrode on the sample surface and measure I-V curves. We found the pure GaN sample surface's I-V curves present Schottky contact, but after etched GaN sample surface's I-V curves present Ohm contact. After longer etching time, GaN's sample surface can produce smaller contact resistance.
URI: http://hdl.handle.net/11455/8618
其他識別: U0005-2207200921030300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2207200921030300
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.