Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8724
標題: 高輸出效率之IEEE 802.11a/b/g媒體存取控制層硬體矽智財架構設計與模擬
Architecture Design and Simulation of High Throughput IEEE 802.11a/b/g MAC-Layer Hardware IP
作者: 陳彥廷
Chen, Yen-Ting
關鍵字: 媒體控制存取層
MAC-Layer
出版社: 電機工程學系所
引用: 中文參考資料 [1]. 鄭同伯,”802.11完全剖析無線網路技術”,博碩文化股份有限公司,2004。 [2]. 黃能富,”區域網路與高速網路”, 維科出版社,1998。 [3]. 唐政,"無線區域網路通訊協定及應用",文魁資訊股份有限公司,2003。 [4]. 蘇斌誠,”低複雜度Ad-hoc模式IEEE802.11a/b/g無線區域網路多媒體存取控制層IP設計:傳輸器部份”,國立中興大學研究生畢業論文,2003年7月。 [5]. 張家偉,”低複雜度Ad-hoc模式IEEE802.11a/b/g無線區域網路多媒體存取控制層IP設計:接收器部份”,國立中興大學研究生畢業論文,2003年7月。 [6]. 楊宗翰,”以FPGA系統平臺設計與驗證IEEE 802.11a/b/g媒體存取控制層硬體矽智財模組”,國立中興大學研究生畢業論文,2008年7月。 英文參考資料 [7]. “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”, ANSI/IEEE Std 802.11, 1999 Edition (R2003), 2003 Page(s):i-513. [8]. “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”, IEEE Std 802.11-1997. [9]. “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications :Higher-Speed Physical Layer Extension in the 2.4GHz Band” ,ANSI/IEEE Std 802.11b-1999~2001. [10]. “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications :High-Speed Physical Layer in the 5 GHz Band” ,ISO/IEC 8802-11:1999/Amd 1:2000(E); IEEE Std 802.11a-1999, 2000 Page(s):i-83. [11]. “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band”, IEEE Std 802.11g-2003(Amendment to IEEE Std 802.11, 1999 Edn. (Reaff 2003) as amended by IEEE Stds 802.11a-1999, 802.11b-1999, 802.11b-1999/Cor 1-2001, and 802.11d-2001), 2003 Page(s):i-67. [12]. “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements”, IEEE Std 802.11e-2005 (Amendment to IEEE Std 802.11™, 1999 Edition (Reaff 2003) as amended by IEEE Std 802.11a™-1999, IEEE Std 802.11b ™ - 1999, IEEE Std 802.11b-1999/Cor 1-2001, IEEE Std 802.11d™-2001,IEEE Std 802.11g™-2003, IEEE Std 802.11h™-2003,IEEE Std 802.11i™-2004, and IEEE Std 802.11j™-2004) [13]. “TGn Sync Proposal Technical Specification”, TGn Sync-2005, IEEE P8024. [14]. “WWise Proposal: High throughput extension to the 802.11 Standard”, WWise-2005, IEEE 802.11-05/0149rl. [15]. “EWC HT MAC Specification version V1.24”, Enhanced Wireless Consortium publication-2006. [16]. IL-Gu LEE, Seung-Beom LEE and Sin-Chong PARK, “Effective co-verification of IEEE 802.11a MAC/PHY combining emulation and simulation technology”, Proceedings of the 38th Annual Simulation Symposium(ANSS’05), 2005. [17]. Ren-Zong Li, Shang-Pin Huang, Fu-Shung Lin, Ming-Tsung Hong, and Po-Ning Chen, ”A Combination Logic Design For A High Speed IEEE 802.11 MAC Controller”, Journal of the Chinese Institute of Engineers, Vol. 26, No.2, pp.255-259, 2003. [18]. S. Abraham, A. Meylan and S. Nanda, ”802.11n MAC Design and System Performance”, IEEE International Conference on Communications, Vol. 5 pp.2957-2961, 2005. [19]. Y. Zorizan, Ad J. Van De Goor and Ivo Schanstra, “An Effective BIST Schemefor Ring-Address Type FIFOs,” International Test Conference, pp.378-387, 1994. 網路資源 [20]. http://www.cs.nthu.edu.tw/~nfhuang/chap13.htm [21]. http://zh.wikipedia.org/w/index.php?title=Wi-Fi&variant=zh-tw
摘要: 在現在的社會中,無線網路變成不可或缺的技術,讓人們隨時隨地享受資訊不受”線”的方便。而802.11為無線網路的一種標準,包含媒體存取控制層與實體層。實體層主要處理無線傳輸相關的技術,而媒體存取控制層負責控制整個無線網路的傳輸機制和跟上層的軟體做溝通。完整的家族制定了具優先權的802.11e QoS技術,以及最新的高傳輸率的802.11n規格,都是現在無線通訊最重要的議題。在本篇論文中,基於之前的媒體存取控制層硬體架構,我們提出改良過的802.11a/b/g 媒體存取控制層硬體架構,把前一版本的產出量再做提升。在媒體存取控制層傳輸端方面,利用Ring-Address Type FIFO來更換原本的兩層式FIFO,以減少額外的浪費。在封包的方面利用多一套CRC硬體與資料訊框硬體,把RTS封包與資料封包做並行處理,來縮短收到CTS封包後發送資料封包的時間。在之前的架構僅支援DCF模式,本篇論文增加了PCF模式,與一個額外的AP硬體控制器來協調傳輸。也增加了控制封包來讓工作站連結以及PCF之下的資料封包,可使用的封包個數也從前一版本的5種變成本篇論文中的15種,讓媒體存取控制層更加完善。在本篇論文改良後的媒體存取控制層硬體DCF部份,利用Xilinx XC4VLX60 FPGA晶片來合成,硬體面積使用了6862個片電路模組(Slice)。頻率為40.9MHz,產出率達171.12Mbps,比標準的802.11g規範的54Mbps還要高出許多。而再加入PCF的部分,使用的硬體面積使用了8636個片電路模組,頻率為38.27MHz,產出也達160.12Mbps,高產出率可以為以後的802.11n媒體存取層設計奠定基礎。
Wireless local area network (WLAN) has been a very important technology recently, and people can enjoy information without a wire everywhere. The 802.11 serious which includes the Physical (PHY)-Layer and the Medium Access Control (MAC)-Layer is the standard for WLAN.The main function of the PHY-Layer is that it processes wireless transmissions, and the main function of the MAC-Layer is that it controls the scheme of data transfers and communicates with upper layers at WLAN. Complete 802.11 family establishes the 802.11e with the priority technology, and includes the 802.11n for the high-throughput application recently. Both of them are very important issues for WLAN communications.In this thesis, based on the previously proposed 802.11a/b/g MAC-Layer hardware architectures, we improve it by rising up its throughput.In the MAC-Layer transmission part, we replace the previous two-level FIFO with the Ring-Address Type FIFO scheme in order to reduce overheads. To process data frames, we add the additional CRC module and the data frame processing hardware to make the RTS frame and the Data frame be processed in parallel for reducing the time to send the Data frame after the CTS frame is received. The previous architecture only works in the DCF mode, but our proposed design works in both DCF and PCF modes and we also add an extra AP hardware controller to coordinate transmissions. We add the controlled frame in order to achieve the connection in stations and the extra Data frame under the PCF mode. Besides, the previous architecture only supports 5 frame formats, but the proposed design can support 14 frame formats to make the MAC-Layer design more complete. Finally, the improved DCF part of the MAC-Layer is synthesized by the FPGA design flow with the Xilinx XC4VLX60 chip. The hardware area needs 6862 slices and the working frequency is 40.9MHz to achieve 171.12Mbps throughput. The throughput is larger than that used in the 802.11g standard, i.e., 54Mbps. By adding the PCF part, the total hardware area needs 8636 slices and the working frequency is 38.27MHz to achieve 160.12Mbps throughput. The proposed high throughput architecture can be a foundation for the future 802.11n MAC-Layer design.
URI: http://hdl.handle.net/11455/8724
其他識別: U0005-2907200920575100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2907200920575100
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.