Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8771
標題: 多輸入多輸出多載波分碼多重接取通訊系統之盲蔽式訊號源之分離與等化
Blind Source Separation and Equalization for MIMO-MC-CDMA communication systems
作者: 程彥嘉
Cheng, Yan-Jia
關鍵字: Blind equalization
盲式等化
MC-CDMA MIMO systems
source separation
Sato
CMA
CMA-based
MCMA
多載波分碼多工存取的多輸入多輸出
訊號分離Sato
恒模數演算法
恒模數根基
改良型恒模數根基演算法
改良型恒模數算法
出版社: 電機工程學系所
引用: [1] G. Xu, H. Liu, L. Tong, and T. Kailah, "A least-square Approach to Blind Channel Identification”, IEEE Trans. SP, vol. 43, pp. 2982-2993, 1995. [2] S. Talwar, M. Viberg, and A. Paulraj, “Blind Separation of Synchronous Co-Channel Digital Signals Using an Antenna Array, Part I, Algorithm”, IEEE Trans. SP, Vol: 44,pp:1184- 1197, 1996 [3] H. Liu and M. D. Zoltowski, “Blind Equalization in Antenna Array CDMA systems”, IEEE Trans. SP, vol. 45, pp. 161-172, 1997. [4] Z. Ding, R. A. Kennedy, B. D. O. Anderson, and C. R. Johnson Jr., “Ill-convergence of Godard blind equalizers in data communication systems,” IEEE Trans. Commun., vol. 39, pp. 459-472, Sept. 1991. [5] D. Donoho, “On minimum entropy deconvolution,” in Applied Time Series Analysis II. New York: Academic, 1981, pp. 565-608. [6] G. J. Foschini, “Equalization without altering or detect data,” AT&T Tech. J., pp. 1885-1911, Oct. 1985. [7] R. D. Gitlin and S. B. Weinstein, “Fractionally-spaced equalization: An improved digital transversal equalizer,” Bell Syst. Tech. J., vol. 60, pp. 275-296, Feb. 1981. [8] D. N. Godard, “Self-recovering equalization and carrier tracking in twodimensional data communication systems,” IEEE Trans. Commun., vol. COM-28, pp. 1867-1875, Nov. 1980. [9] A. Gorokhov and P. Loubaton, “MIMO ARMA systems: Second order blind identification for signal extraction,” in Proc. 8th IEEE SSAP Workshop, Nov. 1996, pp. 348-351. [10] K. Abed-Meriam, P. Loubaton, and E. Moulines, “A subspace algorithm for certain blind identification problems,” IEEE Trans. Inform. Theory, vol. 43, pp. 499-511, Mar. 1997. [11] J. P. LeBlanc, I. Fijalkow, B. Huber, and C. R. Johnson Jr., “Fractionally spaced CMA equalizers under periodic and correlated inputs,” in Proc. ICASSP'95, May 1995, vol. 2, pp. 1041-1045. [12] A. Benveniste, M. Goursat, and G. Ruget, “Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications,” IEEE Trans. Automat. Contr., vol. AC-25, pp. 385-399, June 1980. [13] Y. Li and Z. Ding, “Convergence analysis of finite length blind adaptive equalizers,” IEEE Trans. Signal Processing, vol. 43, pp. 2120-2129, Sept. 1995. [14] “Global convergence of fractionally spaced Godard equalizer,” IEEE Trans. Signal Processing, vol. 44, pp. 818-826, Apr. 1996. [15] Y. Li and K. J. R. Liu, “On blind MIMO channel identification using second order statistics,” in Proc. 30th Conf. Information Sciences and Systems (Princeton, NJ, Mar. 1996). [16] “On blind equalization of MIMO channels,” in Proc. of ICC'96 (Dallas, TX, June 1996), vol. 2, pp. 1020-1024. [17] “Blind identification and equalization for multipleinput/ multiple-output channels,” in Proc. 1996 IEEE Global Telecommunications Conf. (London, U.K., Nov. 1996), pp. 1789- 1793. [18] Y. (Geoffrey) Li and K. J. R. Liu, “Blind identification and equalization for wireless communications using antenna array,” in Proc. SPIE'97, Aug. 1997, vol. 3162, pp. 251-262. [19] F. Ling and S. U. H. Qureshi, “Convergence and steady-state behavior of phase-splitting fractionally-spaced equalizer,” IEEE Trans. Commun., vol. 38, pp. 418-425, Apr. 1990. [20] K. Abed-Meriam, W. Qiu, and Y. Hua, “Blind system identification,” Proc. IEEE, pp. 1310-1322, vol. 85, Aug. 1997. [21] S. Mayrargue, “A blind spatio-temporal equalizer for a radio-mobile channel using the constant modulus algorithm (CMA),” in Proc. IEEE ICASSP'94 (Adelaide, Australia, Apr. 1994), pp. III 317-320. [22] C. L. Nikias, “ARMA bispectrum approach to nonminimum phase system identification,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 513-525, Apr. 1988. [23] C. B. Papadia and A. J. Paulraj, “A constant modulus algorithm for multiuser signal separation in presence of delay spread using antenna arrays,” IEEE Signal Processing Lett., vol. 4, pp. 178-181, June 1997. [24] B. R. Petersen and D. D. Falconer, “Suppression of adjacent-channel, co-channel, and intersymbol interference by equalizers and linear combiners,” IEEE Trans. Commun., vol. 42, pp. 3109-3118, Dec. 1994. [25] Y. Sato, “A method of self-recovering equalization for multi-level amplitude modulation,” IEEE Trans. Commun., vol. COM-23, pp. 679-682, June 1975. [26] O. Shalvi and E. Weinstein, “New criteria for blind deconvolution of non-minimum phase systems (channels),” IEEE Trans. Inform. Theory, vol. 36, pp. 312-321, Mar. 1990. [27] D. Slock, “Blind joint equalization of multiple synchronous mobile users using oversampling and/or multiple antennas,” in Proc. 28th Asilomar Conf. Signal Systems and Computers (Pacific Grove, CA, Oct. 1994), pp. 1154-1158. [28] J. R. Treichler, V. Wolff, and C. R. Johnson Jr., “Observed misconvergence in the constant modulus adaptive algorithm,” in Proc. 25th Asilomar Conf. Signals, Systems and Computers (Pacific Grove, CA, Oct. 1991), pp. 663-667. [29] J. R. Treichler and B. G. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust., Speech Signal Processing, vol. ASSP-31, pp. 349-372, Apr. 1983. [30] J. R. Treichler and M. G. Larimore, “New processing techniques based on the constant modulus adaptive algorithm,” IEEE Trans. Acoust., Speech Signal Processing, vol. ASSP-33, pp. 420-431, Apr. 1985. [31] “The tone capture properties of CMA-based interference suppressors,” IEEE Trans. Acoust., Speech Signal Processing, vol. ASSP-33, pp. 946-958, Aug. 1985. [32] S. Talwar, M. Viberg, and A. Paulraj, “Blind separation of synchronous co-channel digital signals using an antenna array—Part I: Algorithms,” IEEE Trans. Signal Processing, vol. 44, pp. 1184-1197, May 1996. [33] Shi Kun; Zhang Xudong, “A new CMA-based blind equalization for MIMO systems ,” IEEE Trans. Signal Processing, vol. 1, pp. 167-171, June 2004. [34] “On fractionally-spaced blind adaptive equalization under symbol timing offsets using Godard and related equalizers,” in Proc. ICASSP'95, May 1995, vol. 3, pp. 1976-1979. [35] “Blind spatio-temporal equalization and impulse response estimation for MIMO channels using a Godard cost function,” IEEE Trans. Signal Processing, vol. 45, pp. 268-271, Jan. 1997. [36] G. Ungerboeck, “Fractional tap-spacing equalizer and consequences for clock recovery in data modems,” IEEE Trans. Commun., vol. COM-24, pp. 856-864, Aug. 1976. [37] A. van der Veen, S. Talwar, and A. Paulraj, “Blind estimation of multiple digital signals transmitted over FIR channels,” IEEE Signal Processing Lett., vol. 2, May 1995. [38] A. van der Veen and A. Paulraj, “Blind estimation of multiple digital signals transmitted over FIR channels,” IEEE Trans. Signal Processing, vol. 44, pp 1136-1155, May 1996. [39] S. Verd'u, B. D. O. Anderson, and R. A. Kennedy, “Blind equalization without gain identification,” IEEE Trans. Inform. Theory, vol. 39, pp. 292-297, Jan. 1993. [40] E. Weinstein, A. V. Oppenheim, M. Feder, and J. R. Buck, “Iterative and sequential algorithms for multisensor signal enhancement,” IEEE Trans. Signal Processing, vol. 42, pp. 846-859, Apr. 1994. [41] E. Weinstein, A. Swami, G. Giannakis, and S. Shamsunder, “Multichannel ARMA processes,” IEEE Trans. Signal Processing, vol. 42, pp. 898-913, Apr. 1994. [42] J. Yang and S. Roy, “On joint transmitter and receiver optimization for multiple-input-multiple output (MIMO) transmission systems,” IEEE Trans. Commun., vol. 42, pp. 3221-3231, Dec. 1994. [43] D. Yellin and E. Weinstein, “Criteria for multichannel signal separation,” IEEE Trans. Signal Processing, vol. 42, pp. 2158-2168, Aug. 1994. [44] Ye Li ; Liu, K.J.R. , “Adaptive blind source separation and equalization for multiple-input/multiple-output systems,”IEEE Trans. Information Theory, vol. 44, pp. 2864 - 2876, Aug. 2002.
摘要: 在適應性盲訊號分離與等化中Godard 或恒模數演算法(CMA)是最著名及廣泛被使用的演算法。首先可經由分析得知在多重輸入多重輸出的系統中使用恒模數演法等化,可以恢復原輸入訊號,消除符號間干擾(ISI),及有效的壓抑源訊號間的干擾。此外,在有限脈衝響應(FIR)的系統滿足某些條件下,使用恒模數算法在有限脈衝響應的多輸入多輸出系統下(MIMO-CMA FIR)的等化器,可不用設定特定初值就能有效的恢復該系統的原輸入訊號。接著,提出恒模數系列的演算法在多載波分碼多工存取的多輸入多輸出(MC-CDMA MIMO)系統下的適應性盲訊號分離及等化處理。由分析可證實恒模數系列的演算法都可還原系統的所有輸入訊號,且在不用設定特定初值的情況下還原。另外,提出另一個接收端之架構,就是在等化器的前先將訊號做FFT轉換,在這所提到的恒模數系列的演算法有Sato 演算法、恒模數根基演算法CMA-based、改良型恒模數根基演算法和改良型恒模數演算法(MCMA)。恒模數根基演算法已被SHI Kun, and ZHANG Xudong [20]所提出,它改良了CMA,可在不須知道傳送端所使用何種調變下作運算,而所提出的改良型恒模數根基演算法是將恒模數根基演算法的不穩定性作改善且結合了MCMA的概念而提出。最後,經電腦摸擬後可證實分析及說明經恒模數系列的演算法在多載波分碼多工存取的多輸入多輸出(MC-CDMA MIMO)系統下的適應性盲訊號分離及等化後的效能。
The Godard or constant modulus algorithm (CMA) [44] is perhaps the best known and the most popular scheme for adaptive blind source separation and equalization. First analyze reveals that the MIMO-CMA equalizer is able to recover one of the input signals, remove the inter-symbol interference (ISI), and suppress the inter-source interference. Furthermore, for the MIMO finite impulse response (FIR) systems satisfying certain conditions, the MIMO-CMA FIR equalizers are able to perfectly recover one of the system inputs regardless of the initial settings. Then propose a family of CMA for adaptive blind source separation and equalization for Multi-Carrier Code Division Multiple Access (MC-CDMA MIMO) systems. Theoretical analysis proves that the families of constant modulus algorithms are able to recover all system inputs simultaneously regardless of the initial settings. The Family of CMA mentioned has these of Sato、modify CMA-based algorithm、CMA-based algorithm and modify constant modulus algorithm (MCMA), where the CMA-based algorithm has already been proposed by SHI Kun, and ZHANG Xudong [33], it has improved the CMA, that unknown transmitter signal of modulation, and the modify CMA-based algorithm improve the unstability of CMA-based algorithm. Finally, computer simulation examples are presented to confirm analysis and illustrate the effectiveness of A Family of Constant Modulus Algorithms for Blind Source Separation and Equalization in MC-CDMA MIMO Systems.
URI: http://hdl.handle.net/11455/8771
其他識別: U0005-0806201017055400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0806201017055400
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.