Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8864
標題: 以合作型連續螞蟻群聚最佳化設計模糊系統
Fuzzy System Design Using Cooperative Continuous Ant Colony Optimization
作者: 洪齊偉
Hung, Chi-Wei
關鍵字: Continuous Ant Colony Optimization
連續螞蟻群聚最佳化
Cooperative
Fuzzy systems
合作型
模糊系統
出版社: 電機工程學系所
引用: [1] M. Dorigo and T. St tzle, Ant Colony Optimization, MIT, July 2004. [2] C. F. Juang, “A hybrid of genetic algorithm and particle swarm optimization for recurrent network design,” IEEE Trans. Syst., Man, and Cyber., Part B: Cybernetics, vol. 34, no. 2, pp. 997-1006, April, 2004. [3] A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi, “A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems,” IEEE Trans. Industrial Electronics, vol. 52, no. 6, pp. 1478-1489, Dec. 2005. [4] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an ant colony optimization algorithm,” IEEE Trans. Evolutionary Computing, vol. 6, no. 4, pp. 321-332, Aug. 2002. [5] K. M. Sim and W. H. Sun., “Ant colony optimization for routing and load-balancing: survey and new directions,” IEEE Trans. on Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 33, no. 5, pp. 560-572, Sept. 2003. [6] M. Mucientes and J. Casillas, “Quick design of fuzzy controllers with good interpretability in mobile robotics,” IEEE Trans. Fuzzy Systems, vol. 15, no. 4, pp. 636-651, Aug. 2007. [7] C. F. Juang, C. M. Lu, C. Lo, and C. Y. Wang, “Ant colony optimization algorithm for fuzzy controller design and its FPGA implementation,” IEEE Trans. Industrial Electronics, vol. 55, no. 3, pp. 1453-1462, March 2008. [8] G. S. Tewolde and S. Weihua, “Robot path integration in manufacturing processes: genetic algorithm versus ant colony optimization,” IEEE Trans. Sys., Man and Cyber. Part A: Systems and Humans, vol. 38, no. 2, pp. 278-287, March 2008 [9] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm optimization,” IEEE Trans. Evolutionary Computation, vol. 8, no. 3, pp 225-239, June 2004. [10] W. F. Leong and G. G. Yen, “PSO-based multiobjective optimization with dynamic population size and adaptive local archives,” IEEE Trans. Syst., Man, and Cyber. Part B: Cyber., vol. 38, no. 5, pp. 1270-1293, Oct. 2008. [11] C. J. Lin, C. H. Chen, and C. T. Lin, “A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy network and its prediction applications,” IEEE Trans. Syst., Man, and Cyber., - Part C: Applications and Reviews, vol. 39, no. 1, pp. 55-68, Jan. 2009. [12] N. Monmarche, G. venturini, and M. Slimane, “On how pachycondyla apicalis ants suggest a new search algorithm,” Future Generation Computer Systems, vol. 16, pp. 937-946, 2000. [13] J. Dreo and P. Siarry, “Continuous interacting ant colony algorithm based on dense hierarchy,” Future Generation Computer Systems, vol. 20, no. 5, pp. 841-856, 2004. [14] S. Tsutsui, M. Pelican and A. Ghosh, “Performance of aggregation pheromone system on unimodal and multimodal problems,” Proc. IEEE Cong. Evolutionary Computation, pp. 880-887, 2005. [15] K. Socha and M. Dorigo, “Any colony optimization for continuous domain,” European Journal of Operational Research, vol. 185, pp. 1155-1173, 2008. [16] C. F. Juang and P. H. Chang, “Designing fuzzy rule-based systems using continuous ant colony optimization,” IEEE Trans. Fuzzy Systems, vol. 18, no. 1, pp. 138-149, Feb. 2010. [17] P. N. Suganthan, “Particle swarm optimizer with neighbourhood operator,” Proc. Of Int. Conf. Evolutionary Computation,” pp. 1958-1962, 1999. [18] R. Mendes, P. Cortes, M. Rocha, and J. Neves, “Particle swarms for feedforward neural network training,” Proc. Of. IEEE Int. Conf. On Neural Networks, pp. 1895-1899, 2002. [19] T. Ray and K. M. Liew, “Society and civilization: an optimization of algorithm based ob the simulation of social behavior,” IEEE Trans. Evolutionary Computation, vol. 7, no. 4, pp. 386-396, Aug. 2003. [20] J. Kennedy and R. Mendes, “Neighborhood topologies in fully informed and best-of-neighborhood particle swarms,” IEEE Trans. Syst., Man, and Cyber., Part C: Applications and Reviews, vol. 36, no. 4, pp. 515 - 519, July 2006 [21] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by a particle swarm model using speciation,” IEEE Trans. Evolutionary Computation, vol.10, no.4, pp.440-458, Aug. 2006. [22] C. F. Juang, C. M. Hsiao, and C. H. Hsu, “Hierarchical cluster-based multi-species particle swarm optimization for fuzzy system optimization,” IEEE Trans. Fuzzy Systems, vol. 18, no. 1, pp. 14-26, Feb. 2010. [23] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: theory and design,” IEEE Trans. On Fuzzy Systems, vol. 8, no. 5, pp. 535-550, 2000. [24] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic System: Introduction and New Directions, Prentice Hall, Upper Saddle River, NJ2001. [25] J. M. Mendel, “Computing derivatives in interval type-2 fuzzy logic system,” IEEE Trans. On Fuzzy Systems, vol. 12. no. 1, pp. 84-98, Feb. 2004. [26] C. F. Juang and C. Lo, “Zero-order TSK-type fuzzy system learning using a two-phase swarm intelligence,” Fuzzy Sets and Systems, vol. 159, no. 21, pp. 2910-2926, Nov. 2008. [27] C. F. Juang, “Simultaneous structure and parameter design of fuzzy systems by hybridizing multi-group genetic algorithm and particle swarm optimization,” Journal of Intelligent and Fuzzy Systems, vol. 17, no. 2, pp. 83-93, 2006. [28] C. J. Lin, “A GA-based neural fuzzy system for temperature control,” Fuzzy Sets and Systems, vol. 134, pp. 311-333, 2004. [29] K. B. Cho and B. H. Wang, “Radial basis function based adaptive fuzzy systems and their applications to system identification,” Fuzzy Sets and Systems, vol. 83, pp. 325-339, 1996. [30] J. Kim and N. K. Kasabov, “HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamic systems, ” Neural Networks, vol. 12, pp. 1301-1319, 1999. [31] D. Nauk and R. Kruse, “Neuro-fuzzy systems for function approximation,” Fuzzy Sets and Systems, vol. 101, no. 2, pp.261-271, 1999. [32] S. Wu and M. J. Er, “Dynamic fuzzy neural networks - a novel approach to function approximation,” IEEE Trans. Syst., Man, and Cyber., - Part B: Cybernetics, vol. 30, pp. 358-364, 2000. [33] D. Kukolj, “Design of adaptive Takagi-Sugeno-Kang fuzzy models,” Applied Soft Comput., vol. 2, no. 2, pp. 89-103, 2002. [34] M.-S. Chen and S.-W.Wang, “Fuzzy clustering analysis for optimizing fuzzy membership functions,” Fuzzy Sets Syst., vol. 103, no. 2, pp. 239-254, 1999. [35] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference systems,”IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685,Jun. 1993. [36] M.-S. Chen and S.-W.Wang, “Fuzzy clustering analysis for optimizing fuzzy membership functions,” Fuzzy Sets Syst., vol. 103, no. 2, pp.239-254, 1999. [37] M. Sugeno and T. Yasukawa, “A fuzzy logic based approach to qualitative modeling,” IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7-31, Feb.1993. [38] R. Babuska and H. B. Verbruggen, “Constructing fuzzy models by product space clustering,” in Fuzzy Model Identification: Selected Approaches,H. Hellendoorn and D. Driankov, Eds. Berlin, Germany: Springer-Verlag, 1997, pp. 53-90. [39] S. Chiu, “Fuzzy model identification based on cluster estimation,” J. Intell. Fuzzy Syst., vol. 2, no. 3, 1994. [40] H. Nakanishi, I. B. Türks﹐en, and M. Sugeno, “Areviewand comparison of six reasoning methods,” Fuzzy Sets Syst., vol. 57, pp. 257-295, 1993.
摘要: 本論文提出以合作型連續螞蟻群聚 (CCACO)設計模糊系統。模糊系的設計於固定的模糊規則數目,藉由CCACO最佳化所有參數。比較原始的連續螞蟻的運用上,合作型連續螞蟻在解決最佳化的問題中能達到更好的學習效能。在CCACO裡,更新的參數包括前件部及後件部。原始的參數以費洛蒙作為基礎,對原始的解做高斯取樣,並且由全域最佳解重新定義獲得參數的更新。新解的獲得是根據規則的合作。對舊的模糊規則和新的模糊規則進行組合,獲得一個相應於獨立模糊規則的模糊系統。此模糊系統的評估結果即代表模糊規則的效能。本論文中以合作型連續螞蟻群聚 (CCACO)設計模糊系統,模擬了Type-I和Type-II的例子總共有七個。在Type-I和Type-II的結果上都有不錯的效能。結果證明在不同的例子也有好的效能。
This thesis proposes cooperative continuous ant colony optimization (CCACO) for fuzzy system design. The fuzzy system is designed with a fixed number of fuzzy rules and all parameters are optimized by the CCACO. The CCACO shows better performance than previous continuous ant colony optimization algorithms. The CCACO optimizes antecedent and consequent parameters. The original parameters are renewed through pheromone-based Gaussian sampling of the original solutions and attraction caused by a global best solution. New solutions are obtained based on cooperation of fuzzy rules. The old fuzzy rules and renewed fuzzy rules proceed combinations to obtain a corresponding independent fuzzy rule of fuzzy system. The performance of the rules in a fuzzy system is the evaluation results. This thesis applies CCACO to design type-1 and type-2 fuzzy systems in seven examples. The results show good performance in different examples.
URI: http://hdl.handle.net/11455/8864
其他識別: U0005-1908201021291400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201021291400
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.