Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89066
標題: Inheritance of mevinphos resistance in diamondback moth, Plutella xylostella
小菜蛾對美文松的抗藥性遺傳研究
作者: 林佳麗
Chia-Li Lin
關鍵字: 小菜蛾、美文松、抗藥性遺傳、乙醯膽鹼酯酶
Plutella xylostella, mevinphos, inheritance of resistance, acetylcholinesterase
引用: 王文哲、劉達修。1991。數種殺蟲藥劑對小菜蛾幼蟲、蛹及成蟲之毒性。中區農業改良場研究彙報。32: 25-31頁。 呂鳳嗚、李錫山。1984。小菜蛾生活史觀察。中華農業研究。33: 424- 430頁。 許如君、龔庭毅、劉佩芳、李建佑、馮海東。2012。小菜蛾對21種登記殺蟲劑的田間感受性調查及敏感品系感受性基準資料的建立。臺灣昆蟲。32: 25-40。 鄭允、周桃美、高靜華。1984。小菜蛾抗藥性之研究─五、抗美文松品系誘發之交互抗性及其麩胱甘肽轉基酶活性變化情形。中華農業研究。33: 73-80頁。 台灣農業藥物毒物試驗所。2013。歷年政府禁用之農藥一覽表。http://www.tactri.gov.tw/htdocs/regis/forbiden.pdf APRD (2012) Arthropod Pesticide Resistance Database. East Lansing: Michigan State Univ. http://www.pesticideresistance.com/index.php5a. Atumurirava F, Furlong MJ (2011) Diamondback moth resistance to commonly used insecticides in Fiji: Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests (ed. by R Srinivasan, AM Shelton and HL Collins) AVRDC – The World Vegetable Center, Nakhon Pathom, Thailand, pp. 216-221. Baker G (2011) Crucifer vegetable insecticide resistance management strategies and issues in Australia, p. 161. Bourguet D, Lenormand T, Guillemaud T, Marcel V, Fournier D, Raymond M (1997) Variation of dominance of newly arisen adaptive genes. Genetics 147: 1225-1234. Bourguet D, Prout M, Raymond M (1996) Dominance of insecticide resistance presents a plastic response. Genetics 143: 407-416. Bourguet D, Raymond M (1998) The molecular basis of dominance relationships: the case of some recent adaptive genes. Journal of Evolutionary Biology 11: 103-122. Chang C, Huang XY, Chang PC, Wu HH, Dai SM (2012) Inheritance and stability of sodium channel mutations associated with permethrin knockdown resistance in Aedes aegypti. Pesticide Biochemistry and Physiology 104: 136-142. Charlesworth B (1998) Adaptive evolution: the struggle for dominance. Current Biology 8: R502-R504. Chen Z, Newcomb R, Forbes E, McKenzie J, Batterham P (2001) The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly,Lucilia cuprina. Insect biochemistry and molecular biology 31: 805-816. Chi H (1997) Computer program for the probit analysis. National Chung Hsing University, Taichung, Taiwan. Combes D, Fedon Y, Grauso M, Toutant J-P, Arpagaus M (2000) Four Genes Encode Acetylcholinesterases in the Nematodes Caenorhabditis elegans and Caenorhabditis briggsae. cDNA Sequences, Genomic Structures, Mutations and in vivo Expression. Journal of Molecular Biology 300: 727-742. Cotham Jr WE , Bidleman TF (1989) Degradation of malathion, endosulfan, and fenvalerate in seawater and seawater/sediment microcosms. Journal of agricultural and food chemistry 37: 824-828. Dhumale UM, Moharil MP, Ghodki BS (2009) Geographical variations and genetics of pyrethroid resistance in diamondback moth Plutella xylostella L. International Journal of Integrative Biology 7: 175. FAOSTAT ( 2012) Production statistics. Rome: FAO. http://faostat.fao.org/site/567/default.aspx#ancor. Fournier D, Bride JM, Karch F, Berge JB (1988) Acetylcholinesterase from Drosophila melanogaster Identification of two subunits encoded by the same gene. FEBS letters 238: 333-337. Furlong MJ, Spafford H, Ridland PM, Endersby NM, Edwards OR, Baker GJ, Keller MA, Paull CA (2008) Ecology of diamondback moth in Australian canola: landscape perspectives and the implications for management. Australian Journal of Experimental Agriculture 48: 1494-1505. Georghiou G (1969) Genetics of resistance to insecticides in houseflies and mosquitoes. Experimental parasitology 26: 224-255. Georghiou GP , Taylor CE (1977) Operational influences in the evolution of insecticide resistance. Journal of Economic Entomology 70: 653-658. Hsu JC, Haymer DS, Wu WJ, Feng HT (2006) Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect biochemistry and molecular biology 36: 396-402. IRMRG (2008) Insecticide Resistance Management Strategy: National DBM Project Team and Horticultural Research and Development Corporation, Australia. Nabeshima T, Kozaki T, Tomita T, Kono Y (2003) An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochemical and Biophysical Research Communications 307: 15-22. NAR (2002) Reconsideration of the Approvals and Registrations.Associated with the Organophosphorous Insecticide Mevinphos. National Registration Authority for Agricultural and Veterinary Chemicals, Australia. Newell GW (1956) Results of acute oral toxicity studies with Phosdrin insecticide in rats and mice. Stanford Research Institute Project B868, Letter Report 9. April 10. DPR Vol. 157-006 #35759. Pu X, Yang Y, Wu S, Wu Y (2010) Characterisation of abamectin resistance in a field‐evolved multiresistant population of Plutella xylostella. Pest Management Science 66: 371-378. Ronald F.L. Mau, Gusukuma-Minuto L (2004) Diamondback moth, Plutella xylostella (L.), resistance management in Hawaii, Vol. 34: University of Hawaii at Manoa, Hawaii pp. 307-311. Russell RJ, Claudianos C, Campbell PM, Horne I, Sutherland TD, Oakeshott JG (2004) Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pesticide Biochemistry and Physiology 79: 84-93. Sayyed AH, Attique MNR, Khaliq A, Wright DJ (2005a) Inheritance of resistance and cross‐resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Pest Management Science 61: 636-642. Sayyed AH, Crickmore N (2007) Selection of a field population of diamondback moth (Lepidoptera: Plutellidae) with acetamiprid maintains, but does not increase, cross-resistance to pyrethroids. Journal of Economic Entomology 100: 932-938. Sayyed AH, Gatsi R, Ibiza-Palacios MS, Escriche B, Wright DJ, Crickmore N (2005b) Common, but Complex, Mode of Resistance of Plutella xylostella to Bacillus thuringiensis Toxins Cry1Ab and Cry1Ac. Applied and Environmental Microbiology 71: 6863-6869. Sayyed AH, Omar D, Wright DJ (2004a) Genetics of spinosad resistance in a multi‐resistant field‐selected population of Plutella xylostella. Pest Management Science 60: 827-832. Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ (2004b) Genetic and Biochemical Characterization of Field-Evolved Resistance to Bacillus thuringiensis Toxin Cry1Ac in the Diamondback Moth, Plutella xylostella. Applied and Environmental Microbiology 70: 7010-7017. Sayyed AH, Wright DJ (2004) Fipronil resistance in the diamondback moth (Lepidoptera: Plutellidae): inheritance and number of genes involved. Journal of Economic Entomology 97: 2043-2050. Sayyed AH, Wright DJ (2006) Genetics and evidence for an esterase‐associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera: Plutellidae). Pest Management Science 62: 1045-1051. Schellhorn NA, Nyoike TW, Liburd OE (2009) IPM programs in vegetable crops in Australia and USA: current status and emerging trends: Integrated Pest Management: Innovation-Development Process (ed. Springer, pp. 575-597. Schulten GGM, Vandeklashorst G, Russell VM (1976) Resistance of Phytoseiulus-Persimilis Ah (Acari-Phytoseiidae) to Some Insecticides. Zeitschrift Fur Angewandte Entomologie-Journal of Applied Entomology 80: 337-341. Shelton AM, Robertson J, Tang J, Perez C, Eigenbrode S, Preisler H, Wilsey W, Cooley R (1993) Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. Journal of Economic Entomology 86: 697-705. Shelton AM, Sances FV, Hawley J, Tang JD, Boune M, Jungers D, Collins HL, Farias J (2000) Assessment of insecticide resistance after the outbreak of diamondback moth (Lepidoptera : Plutellidae) in California in 1997. Journal of Economic Entomology 93: 931-936. Stone B (1968) A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bulletin of the World Health Organization 38: 325. Sun CN, Wu T, Chen J, Lee W (1986) Insecticide resistance in diamondback moth: Diamondback Moth Management: Proceedings of the First International Workshop, Asian Vegetable Research and Development Center. AVRDC, Shanhua, Taiwan ed., pp. 359-371. Tabashnik BE (1991) Determining the mode of inheritance of pesticide resistance with backcross experiments. Journal of Economic Entomology 84: 703-712. Tabashnik BE, Schwartz JM, Finson N, Johnson MW (1992) Inheritance of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 85: 1046-1055. Talekar NS, Shelton AM (1993) Biology, Ecology, and Management of the Diamondback Moth. Annual Review of Entomology 38: 275-301. Tang JD, Gilboa S, Roush RT, Shelton AM (1997) Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) from Florida. Journal of Economic Entomology 90: 732-741. Tsukamoto M (1983) Methods of genetic analysis of insecticide resistance: Pest Resistance to Pesticides ed. Springer, pp. 71-98. United States Environmental Protection Agency (2000) Mevinphos. Walsh S, Dolden T, Moores G, Kristensen M, Lewis T, Devonshire A, Williamson M (2001) Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J 359: 175-181. Wang X, Khakame SK, Ye C, Yang Y, Wu Y (2012) Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Management Science 69(5):661-5. Wolfe NL, Zepp RG, Paris DF, Baughman GL, Hollis RC (1977) Methoxychlor and DDT degradation in water: rates and products. Environmental Science and Technology 11: 1077-1081. Zalucki MP, Shabbir A, Silva R, Adamson D, Shu-Sheng L, Furlong MJ (2012) Estimating the Economic Cost of One of the world''s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? Journal of Economic Entomology 105: 1107-1476. Zhao JZ, Li YX, Collins HL, Gusukuma-Minuto L, Mau RFL, Thompson GD, Shelton AM (2002) Monitoring and characterization of diamondback moth (Lepidoptera : Plutellidae) resistance to spinosad. Journal of Economic Entomology 95: 430-436.
摘要: 小菜蛾 (Plutella xylostella L.) 為十字花科蔬菜的重要害蟲,也是最容易對防治藥劑產生抗藥性的害蟲之一。為有效管理抗藥性問題,有必要進一步了解小菜蛾對殺蟲劑之抗藥性遺傳特性,以評估小菜蛾的抗藥性發展速度。本研究以美文松為例,利用本實驗室先前研究發現與美文松抗藥性相關的乙醯膽鹼酯酶 (Acetylcholinesterase, AChE) A298S、G324A與F386V胺基酸置換建立攜帶AChE感性基因型的 SHggt品系與抗性基因型的SHMTCN品系,並進行互交、生物檢定與突變頻度分析。初步結果發現感性與抗性親代,以及兩個互交子代F1及F1' 小菜蛾的半致死濃度分別為14.9, 775.6, 334.1及363.3 μg/ ml,F1及F1' 小菜蛾的顯性度 (Degree of dominance) 分別為0.57及0.62。這些結果顯示小菜蛾對美文松的抗藥性是沒有母體效應的不完全顯性遺傳。經由F1與感性親代回交及F1自交的子代死亡率Probit值與美文松濃度作圖,發現劑量死亡反應曲線為具有平台的椅型曲線,表示由單基因控制,但在卡方檢測不符合單基因模型,進而進行間接卡方檢測,則符合2個基因模型。小菜蛾對美文松抗藥性穩定度,第一至第十一世代其抗性倍率從52.10倍衰退到5.48倍,可見小菜蛾對美文松的抗藥性不穩定。第一步偵測小菜蛾AChE基因 (Pxae1) 變異頻度發現G892T、G971C、T1156G點突變頻度與半致死濃度高度相關,相關度達0.97。綜合上述結果得知小菜蛾對美文松抗藥性主要與ae1點突變相關,屬於不完全顯性遺傳,抗藥性發展速率較隱性遺傳者快。因此,未來在小菜蛾對美文松或其他有機磷殺蟲藥劑的抗藥性管理應使用高劑量藥劑的防治策略來殺死偏顯性的異型合子,並且持續監測抗藥性的發展趨勢,適時輪用不同作用機制的藥劑,以達到避免或延遲抗藥性產生的目的。
Diamondback moth (Plutella xylostella L.), which causes enormous damage on cruciferous vegetables, can develop resistance very rapidly to insecticides. To effectively manage insecticides resistance, it is necessary to understand the inheritance of insecticide resistance and evaluate the speed of resistant development in diamondback moth. In this study, we used mevinphos an example to investigate the inheritance of insecticide resistance in P. xylostella. Based on our previous studies that acetylcholinesterase (AChE) amino acid substitution associated with resistance to mevinphos, two pure lines, a wild-type SHggt strain and resistant SHMTCN strain carrying A298S, G324A and F386V amino acid substitutions, were established and performed reciprocal cross experiments, bioassays, and mutation frequency analysis. The results showed that the LC50 of parental, SHggt and SHMTCN, and two reciprocal cross progeny, F1and F1', were 14.9, 775.6, 334.1 and 363.3 μg / ml. The degree of dominance of F1 and F1'' were 0.57 and 0.62. A plateau was found on the log dose –Probit lines of backcrossing and self-cross progeny. These results indicate that the inheritance of mevinphos-resistance in P. xylostella is an incomplete dominant and autosomal trait governed by polygene. In addition, the frequency of AChE gene (ace1) mutation in P. xylostella was found highly correlated with the LC50, the R2 is 0.97. The relaxation of SHMTCN show the resistant ratio 52.01-fold at first generation and decline to 5.48-fold at eleventh generation prove the unstable mevinphos-resistane in P. xylostella. The results show faster development of resistance than recessive inheritance. Therefore, the future of resistant management strategy is to use high doses mevinphos to kill all heterozygous, and to continue monitoring of resistance trends, to rotate insecticides with different mode of action, in order to avoid or delay the resistance in diamondback moth.
URI: http://hdl.handle.net/11455/89066
其他識別: U0005-1301201417560800
文章公開時間: 2015-07-01
Appears in Collections:昆蟲學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.