Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89083
標題: The effect of plant growth promoting microorganisms (PGPMs) with different factors on plant performance and subsequent Spodoptera litura performance
施用微生物肥料在不同因子下對於植物及斜紋夜蛾生長之影響
作者: 尤婉緹
Yuwatida Sripontan
關鍵字: PGPMs
Soil type
Plant species
Fertilizer
Methyl jasmonate
Spododoptera litura
微生物肥料
土壤
植物種類
肥料
甲基茉莉花酸、斜紋夜蛾
引用: Adesemoye, A.O., Kloepper, J.W., 2009. Plant-microbes interactions in enhanced fertilizer use efficiency. Appl. Microbiol. Biotechnol. 85, 1-12. Afzal, A., Bano, A., 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int. J. Agri. Biol. 10, 85-88. Almaghrabi, O.A., Massoud, S.I., Abdelmoneim, T.S., 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. Sci. 20, 57-60. Bashan, Y., de-Bashan, L.E., 2005. Bacteria/plant growth-promotion, In: Hillel, D. (Ed.), Encyclopedia of soils in the environment. Elsevier, Oxford, U.K., pp. 103-115. Burd, G.I., Dixon, D.G., Glick, B.R., 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46, 237-245. Bybordi, A., Ebrahimian, E., 2013. Growth, yield and quality components of canola fertilized with urea and zeolite. Comm. Soil Sci. Plant Anal. 44, 2896-2915. Cakmakci, R., Donmez, F., Aydin, A., Şahin, F., 2006. Growth promoting of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38, 1482-1487. Clark, R.B., Zeto, S.K., 1996. Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol. Biochem. 28, 1495-1503. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., Ait Barka, E., 2005. Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium, Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71, 1685-1693. De Freitas, J.R., Germida, J.J., 1990. Plant growth promoting rhizobacteria for winter wheat. Can. J. Microbiol. 36, 265-272. Dhir, B.C., Mohapatra, H.K., Senapathi, B., 1992. Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian J. Plant Protect. 20, 215-217. Egamberdiyeva, D., 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36, 184-189. Egamberdiyeva, D., Hoflich, G., 2003. Influence of growth promoting bacteria on the growth of wheat in different soils and temperatures. Soil Bio. Biochem. 35, 973-978. Farmer, E.E., Ryan, C.A., 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. U.S.A. 87, 7713-7716. Figueiredo, M.V.B., Seldin Lucy, Araujo, F.F.de, Mariano, R.L.R., 2011. Plant growth promoting rhizobacteria: fundamentals and applications. Microbiol. Monogr. 18, 21-43. Frommel, M.I., Nowak, J., Lazarovitis, G., 1993. Treatment of potato tubers with a growth promoting Pseudomonas sp.: Plant growth responses and bacterium distribution in the rhizosphere. Plant Soil 150, 51-60. Green, T.R., Ryan, C.A., 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175, 776-777. Hunt, M.D., Neuenschwander, U.H., Delaney, T.P., Weymann, K.B., Friedrich, L.B., Lawton, K.A., Steiner, H.‐Y., Ryals, J.A., 1996. Recent advances in systemic acquired resistance research a review. Gene 179, 89-95. Janarthanan, S., Seshadri, S., Kathiravan, K., Ignacimuthu, S., 2003. Comparison of insecticide resistant and susceptible populations of Spodoptera litura Feb. Indian J. Biotechnol. 2, 539-542. Jeyarani, S., Karuppuchamy, P., Sathiah, N., 2011. Influence of Pseudomonas fluorescens induced plant defenses on efficacy of nucleopolyhedrovirus of Helicoverpa armigera in okra and tomato. Int. J. Vegetable Sci. 17, 283-295. Kamala Jayanthi, P.D., Padmavathamma, K., 2001. Joint action of microbial and chemical insecticides on Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). J. Tropical Agric. 39, 142-144. Karthiba, L., Saveetha, K., Suresh, S., Raguchander, T., Saravanakumar, D., Samiyappan, R., 2010. PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Manag. Sci. 66, 555-564. Kranthi, K.R., Jadhav, D.R., Wanjari, R.R., Ali, S.S., Russell, D.A., 2001. Carbamate and organophosphate resistance in cotton pests in India, 1995-1999. Bull. Entomol. Res. 91, 37-46. Lau, W.H., Mohd-Arif, M.H., Chooi, Y.S., 2012. Prey preference of four species of forest spiders to Spodoptera litura and Plutella xylostella. Pertanika J. Trop. Agric. Sci. 35, 49-56. Melvin, J.M., Muthukumaran, N., 2008. Role of certain elicitors on the chemical induction of resistance in tomato against the leaf caterpillar Spodoptera litura Feb. Not. Bot. Hort. Agrobot. Cluj. 36, 71-75. Nakayan, P., Hameed, A., Singh, S., Young, L.-S., Hung, M.-H., Young, C.-C., 2013. Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization. Plant Soil 373, 301-315. Nichols, K.A., Wright, S.F., 2004. Contributions of fungi to soil organic matter in agroecosystems, In: Magdoff, F., Ray, R.W. (Ed.), Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp. 179-198. Okon, Y., Labandera-Gonzalez, C.A., 1994. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 26, 1591-1601. Patil, R.A., Mehta, D.M., Jat, B.L., 2014. Studies on life fecundity tables of Spodoptera litura Fabricius on tobacco Nicotiana tabacum Linnaeus. Entomol. Ornithol. Herpetol. 3, 118. doi: 10.4172/2161-0983.1000118. Patnaik, H. P., 1998. Pheromone trap catches of Spodoptera litura F. and extent of damage on hybrid tomato in Orissa. Advances in IPM for horticultural crops. Proceedings of the in first national symposium on pest management horticultural crops: environmental implications and thrusts, Bangalore, India, 15-17 October 1997, pp. 68-72. Pawlowska, T.E., Chaney, R.L., Chin, M., Charvat, I., 2000. Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Appl. Environ. Microbiol. 66, 2526-2530. Perić, V., Srebrić, M., Jankuloski, L., Jankulovska, M., Žilić, S., Kandić, V., Mladenović Drinić, S., 2009. The effects of nitrogen on protein, oil and trypsin inhibitor content of soybean. Genetika 41, 137-144. Pineda, A., Dicke, M., Pieterse, C.M.J., Pozo, M.J., 2013. Beneficial microbes in a changing environment: are they always helping plants to deal with insects?. Functional Ecol. 27, 574-586. Pineda, A., Zheng, S.-J., van Loon, J.J.A., Pieterse, C.M.J., Dicke, M., 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci. 15, 507-514. Prudic, K.L., Oliver, J.C., Bowers, M.D., 2005. Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore. Oecologia 143, 578-587. Ramakrishnan, N., Saxena, V.S., Dhingra, S., 1983. Insecticide resistance in the population of Spodoptera litura (Fab.) in Andhra Pradesh. Pesticides18, 23-27 Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V., Samiyappan, R., 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 20, 1-11. Saravanakumar, D., Lavanya, N., Muthumeena, K., Raguchander, T., Samiyappan, R., 2009. Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. BioControl 54, 273-286. Saravanakumar, D., Muthumeena, K., Lavanya, N., Suresh, S., Rajendran, L., Raguchander, T., Samiyappan, R., 2007. Pseudomonas-induced defence molecules in rice plants against leaffolder (Cnaphalocrocis medinalis) pest. Pest Manag. Sci. 63, 714-721. Senthilraja, G., Anand, T., Durairaj, C., Kennedy, J.S., Suresh, S., Raguchander, T., Samiyappan, R., 2010. A new microbial consortia containing entomopathogenic fungus, Beauveria bassiana and plant growth promoting rhizobacteria, Pseudomonas fluorescens for simultaneous management of leafminers and collar rot disease in groundnut. Biocontrol Sci. Technol. 20, 449-464. Senthilraja, G., Anand, T., Kennedy, J.S., Raguchander, T., Samiyappan, R., 2013. Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiol. Mol. Plant Pathol. 82, 10-19. Sikora, R.A., 1988. Interrelationship between plant health promoting rhizobacteria, plant parasitic nematodes and soil microorganisms. Med. Fac. Landbouww. Rijksuniv. Gent. 53, 867-878. Sticher, L., Mauch‐Mani, B., Metraux, J.‐P., 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35, 235-270. Stout, M.J., Brovont, R.A., Duffey, S.S., 1998. Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. J. Chem. Ecol. 24, 945-963. Thaler, J.S., Stout, M.J., Karban, R., Duffey, S.S., 1996. Exogenous jasmonates simulate insect wounding in tomato plants, Lycopersicon esculentum, in the laboratory and field. J. Chem. Ecol. 22, 1767-1781. Thaler, J.S., Fidantsef, A.L., Bostock, R.M., 2002 (a). Antagonism between jasmonate-and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J. Chem. Ecol. 28, 1131-1157. Thaler, J.S., Farag, M.A., Pare, P.W., Dicke, M., 2002 (b). Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecol. Lett. 5, 764-774. Tuzun, S., Kuć, J., 1985. Movement of a factor in tobacco infected with Peronospora tabacina Adam which systemically protects against blue mold. Physiol. Plant Pathol. 26, 321-330. University of California. Integrated Pest Management Strategies (IPM) manuals; Integrated Pest Management Strategies. Publication 1149. University of California, Florida Cooperative Extension Service. 1995. pp. 1-7 University of California. Integrated Pest Management for Organic Crops. Publication 7251. University of California, Division of Agriculture and Natural Resources. 2000. pp. 1-5 Vessey, J.K., 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586. Wu, C.J., Fan, S.Y., Jiang, Y.H., Zhang, A.B., 2004. Inducing gathering effect of taro on Spodoptera litura Fabricius. Chinese J. Ecol. 23, 172-174. Zehnder, G., Kloepper, J., Yao, C., Wei, G., 1997. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Crysomelidae) by plant-growth-promoting-rhizobacteria. J. Econ. Entomol. 90, 391-396. Afzal, A., Bano, A., 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int. J. Agri. Biol. 10, 85-88. Adesemoye, A.O., Kloepper, J.W., 2009. Plant-microbes interactions in enhanced fertilizer use efficiency. Appl. Microbiol. Biotechnol. 85, 1-12. Almaghrabi, O.A., Massoud, S.I., Abdelmoneim, T.S., 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. Sci. 20, 57-60. Altieri, M.A., Nicholls, C.I., 2003. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Till. Res. 72, 203-211. Bashan, Y., de-Bashan, L.E., 2005. Bacteria/plant growth-promotion, In: Hillel, D., (Eds.), Encyclopedia of soils in the environment. Elsevier, Oxford, U.K., pp. 103-115. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. Cakmakci, R., Donmez, F., Aydin, A., Şahin, F., 2006. Growth promoting of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38, 1482-1487. Chiarini, L., Bevivino, A., Dalmastri, C., Nacamulli, C., Tabacchioni, S., 1998. Influence of plant development, cultivar and soil type on microbial colonization of maize roots. App. Soil Ecol. 8, 11-18. Cipollini, D., Enright, S., Traw, M.B., Bergelson, J., 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol. Ecol. 13, 1643-1653. Egamberdiyeva, D., 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36, 184-189. Egamberdiyeva, D., Hoflich, G., 2003. Influence of growth promoting bacteria on the growth of wheat in different soils and temperatures. Soil Bio. Biochem. 35, 973-978. Farrar, R.R. Jr., Barbour, J.D., Kennedy, G.G., 1989. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82, 593-598. Figueiredo, M.V.B., Seldin Lucy, de Araujo, F.F., Mariano, R.L.R., 2011. Plant growth promoting rhizobacteria: fundamentals and applications. Microbiol. Monogr. 18, 21-43. Glick, B.R., 2004. Bacterial ACC-deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 56, 291-312. Hemming, J.D.C., Lindroth, R.L., 1999. Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. J. Chem. Ecol. 25, 1687-1714. Kamath, S., Bhattacharyya, D., Padukudru, C., Timmons, R.B., Tang, L., 2008. Surface chemistry influences implant-mediated host tissue responses. J. Biomed. Mater. Res. A. 86, 617-626. Karthiba, L., Saveetha, K., Suresh, S., Raguchander, T., Saravanakumar, D., Samiyappan, R., 2010. PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Manag. Sci. 66, 555-564. Kokalis-Burelle, N., Vavrina, C.S., Rosskopf, E.N., Shelby, R.A., 2002. Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238, 257-266. Lai, W.-A., Rekha, P.D., Arun, A.B., Young, C.-C., 2008. Effect of mineral fertilizer, pig manure, and Azospirillum rugosum on growth and nutrient contents of Lactuca sativa L. Biol. Fertil. Soils 45, 155-164. Latour, X., Corberand, T., Laguerre, G., Allard, F., Lemanceau, P., 1996. The composition of Flourescent Pseudomonad population associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol. 62, 2449-2456. Lee, T.M., Lin, Y.H., 1995. Trypsin inhibitor and trypsin-like protease activity in air- or submergence-grown rice (Oryza sativa L.) coleoptiles. Plant Sci. 106, 43-54. Lucy, M., Reed, E., Glick, B.R., 2004. Applications of free living plant growth-promoting rhizobacteria. Anton. Leeuw. Int. J. Gen. Mol. Microbiol. 86, 1-25. Mevi-Schutz, J., Goverde, M., Erhardt, A., 2003. Effects of fertilization and elevated CO2 on larval food and butterfly nectar amino acid preference in Coenonympha pamphilus L. Behav. Ecol. Sociobio. 54, 36-43. Myers, J.H., 1985. Effect of physiological condition of the host plant on the ovipositional choice of the cabbage white butterfly, Pieris rapae. J. Anim. Ecol. 54, 193-204. Nakayan, P., Hameed, A., Singh, S., Young, L.-S., Hung, M.-H., Young, C.-C., 2013. Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization. Plant Soil 373, 301-315. Orcutt, D.M., Nilsen, E.T., 2000. Physiology of plants under stress: Soil and biotic factors, John Wiley & Sons, Inc. New York. Pineda, A., Zheng, S.-J., Van Loon, J.J.A., Pieterse, C.M.J., Dicke, M., 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci. 15, 507-514. Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V., Samiyappan, R., 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 20, 1-11. Rekha, P.D., Lai, W.-A., Arun, A.B., Young, C.-C., 2007. Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour. Technol. 98, 447-451. Ryan, J.D., Gregory, P., Tingey, W.M., 1982. Phenolic oxidase activites in glandular trichomes of Solanum berthaultii. Phytochemistry 21, 1885-1887. Saravanakumar, D., Muthumeena, K., Lavanya, N., Suresh, S., Rajendran, L., Raguchander, T., Samiyappan, R., 2007. Pseudomonas-induced defence molecules in rice plants against leaffolder (Cnaphalocrocis medinalis) pest. Pest Manag. Sci. 63, 714-721. Schoonhoven, L.M., Jermy, T., Van Loon, J.J.A., 1998. Insect-plant biology: from physiology to evolution. Chapman and Hall London. Senthilraja, G., Anand, T., Durairaj, C., Kennedy, J.S., Suresh, S., Raguchander, T., Samiyappan, R., 2010. A new microbial consortia containing entomopathogenic fungus, Beauveria bassiana and plant growth promoting rhizobacteria, Pseudomonas fluorescens for simultaneous management of leafminers and collar rot disease in groundnut. Biocontrol. Sci. Technol. 20, 449-464. Senthilraja, G., Anand, T., Kennedy, J.S., Raguchander, T., Samiyappan, R., 2013. Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiol. Mol. Plant Pathol. 82, 10-19. Sikora, R.A., 1988. Interrelationship between plant health promoting rhizobacteria, plant parasitic nematodes and soil microorganisms. Med. Fac. Landbouww. Rijksuniv. Gent. 53, 867-878. Stout, M.J., Fidantsef, A.L., Duffey, S.S., Bostock, R.M., 1999. Signal interactions in pathogen and insect attack: systemic plant mediated interactions between pathogens and herbivores of the tomato. Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54, 115-130. Tan, C.-W., Chiang, S.-Y., Ravuiwasa, K.T., Yadav, J., Hwang, S.-Y., 2012. Jasmonate-induced defense in tomato against Helicoverpa armigera depend in part on nutrient availability, but artificial induction via methyl jasmonate dose not. Arthropod Plant Interact. 6, 531-541. Tan, C.-W., Lo, J.-C., Yadav, J., Ravuiwasa, K.T., Hwang, S.-Y., 2011. Methyl jasmonate induced responses in four plant species and its effect on Spodoptera litura Fab. performance. J. Asia Pac. Entomol. 14, 263-269. Thaler, J.S., Stout, M.J., Karban, R., Duffey, S.S., 1996. Exogenous jasmonates simulate insect wounding in tomato plants, Lycopersicon esculentum, in the laboratory and field. J. Chem. Ecol. 22, 1767-1781. Thaler, J.S., Stout, M.J., Karban, R., Duffey, S.S., 2001. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol. Entomol. 26, 312-324. Vijayasamundeeswari, A., Ladhalakshmi, D., Sankaralingam, A., Samiyappan, R., 2009. Plant growth promoting rhizobacteria of cotton affecting the developmental stages of Helicoverpa armigera. J. Plant Prot. Res. 49, 239-243. Waldbauer, G.P., 1968. The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229-288. Yadav, J., Tan, C.-W., Hwang, S.-Y., 2010. Spatial variation in foliar chemicals within radish (Raphanus sativus) plants and their effects on performance of Spodoptera litura. Environ. Entomol. 39, 1990-1996. Zehnder, G., Kloepper, J., Yao, C., Wei, G., 1997. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Crysomelidae) by plant-growth-promoting-rhizobacteria. J. Econ. Entomol. 90, 391-396. Adler, L.S., Schmitt, J., Bowers, M.D., 1995. Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia 101, 75-85. Bashan, Y., de-Bashan, L.E., 2005. Bacteria/plant growth-promotion, In: Hillel, D., (Ed.), Encyclopedia of soils in the environment. Elsevier, Oxford, U.K., pp. 103-115. Berenbaum, M.R., Zangerl, A.R., Nitao, J.K., 1986. Constraints on chemical coevolution: wild parsnips and the parsnip webworm. Evolution 40, 1215-1228. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. Bryant, J.P., Chapin, F.S. III., Klein, D.R., 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357-368. Burd, G.I., Dixon, D.G., Glick, B.R., 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46, 237-245. Chen, C., Belanger, R., Benhamou, N., Paulitz, T.C., 2000. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol. Mol. Plant Pathol. 56, 13-23. Cipollini, D., Enright, S., Traw, M.B., Bergelson, J., 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol. Ecol. 13, 1643-1653. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., Ait Barka, E., 2005. Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium, Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71, 1685-1693. Egamberdiyeva, D., Hoflich, G., 2003. Influence of growth promoting bacteria on the growth of wheat in different soils and temperatures. Soil Bio. Biochem. 35, 973-978. Farrar, R.R.Jr., Barbour, J.D., Kennedy, G.G., 1989. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82, 593-598. Figueiredo, M.V.B., Seldin Lucy, de Araujo, F.F., Mariano, R.L.R., 2011. Plant growth promoting rhizobacteria: fundamentals and applications. Microbiol. Monogr. 18, 21-43. Glick, B.R., 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109-117. Glick, B.R., 2004. Bacterial ACC-deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 56, 291-312. Green, T.R., Ryan, C.A., 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175, 776-777. Hallmann, J., Quadt-Hallmann, A., Mahaffee, W.F., Kloepper, J.W., 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43, 895-914. Harrison, M.J., 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 59, 19-42. Herms, D.A., Mattson, W.J., 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67, 283-335. Howe, G.A., Schaller, A., 2008. Direct defenses in plants and their induction by wounding and insect herbivores. In: Schaller, A., (Ed.): Induced plant resistance to herbivory. Springer Science+Business Media, Germany, Ch1. Hunt, M.D., Neuenschwander, U.H., Delaney, T.P., Weymann, K.B., Friedrich, L.B., Lawton, K.A., Steiner, H.‐Y., Ryals, J.A., 1996. Recent advances in systemic acquired resistance research a review. Gene 179, 89-95. Hwang, S.-Y., Lindroth, R.L., 1997. Clonal variation in foliar chemistry of aspen: effects on gypsy moth and forest tent caterpillars. Oecologia 111, 99-108. Johnson, M.T.J., Agrawal, A.A., 2005. Plant genotype and environment interact to shape a diverse arthropod community on evening primrose (Oenothera biennis). Ecology 86, 874-885. Karban, R., Baldwin, I.T., 1997. Induced responses to herbivory, University of Chicago Press, Chicago. Kamath, S., Bhattacharyya, D., Padukudru, C., Timmons, R.B., Tang, L., 2008. Surface chemistry influences implant-mediated host tissue responses. J. Biomed. Mater. Res. A. 86, 617-626. Lai, W.-A., Rekha, P.D., Arun, A.B., Young, C.-C., 2008. Effect of mineral fertilizer, pig manure, and Azospirillum rugosum on growth and nutrient contents of Lactuca sativa L. Biol. Fertil. Soils 45, 155-164. Lee, T.M., Lin, Y.H., 1995. Trypsin inhibitor and trypsin-like protease activity in air- or submergence-grown rice (Oryza sativa L.) coleoptiles. Plant Sci. 106, 43-54. Nakayan, P., Hameed, A., Singh, S., Young, L.-S., Hung, M.-H., Young, C.-C., 2013. Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization. Plant Soil 373, 301-315. Pineda, A., Zheng, S.-J., Van Loon, J.J.A., Pieterse, C.M.J., Dicke, M., 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci. 15, 507-514. Poelman, E.H., Broekgaarden, C., Van Loon, J.J.A., Dicke, M., 2008. Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol. Ecol. 17, 3352-3365. Qingwen, Z., Ping, L., Gang, W., Qingnian, C., 1998. On the biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting young seedling at plumular axis. Acta. Phytophylacica. Sinica. 25, 209-212. Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V., Samiyappan, R., 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 20, 1-11. Ryan, J.D., Gregory, P., Tingey, W.M., 1982. Phenolic oxidase activites in glandular trichomes of Solanum berthaultii. Phytochemistry 21, 1885-1887. Saravanakumar, D., Muthumeena, K., Lavanya, N., Suresh, S., Rajendran, L., Raguchander, T., Samiyappan, R., 2007. Pseudomonas-induced defence molecules in rice plants against leaffolder (Cnaphalocrocis medinalis) pest. Pest Manag. Sci. 63, 714-721. Saravanakumar, D., Lavanya, N., Muthumeena, K., Raguchander, T., Samiyappan, R., 2009. Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Bio. Control 54, 273-286. Schoonhoven, L.M., Jermy, T., Van Loon., J.J.A., 1998. Insect-plant biology: from physiology to evolution. Chapman and Hall, London. Senthilraja, G., Anand, T., Durairaj, C., Kennedy, J.S., Suresh, S., Raguchander, T., Samiyappan, R., 2010. A new microbial consortia containing entomopathogenic fungus, Beauveria bassiana and plant growth promoting rhizobacteria, Pseudomonas fluorescens for simultaneous management of leafminers and collar rot disease in groundnut. Biocontrol Sci. Technol. 20, 449-464. Senthilraja, G., Anand, T., Kennedy, J.S., Raguchander, T., Samiyappan, R., 2013. Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiol. Mol. Plant Pathol. 82, 10-19. Shanmugam, V., Kanoujia, N., 2011. Biological management of vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biol. Control. 57, 85-93. Sticher, L., Mauch‐Mani, B., Metraux, J.‐P., 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35, 235-270. Stout, M.J., Fidantsef, A.L., Duffey, S.S., Bostock, R.M., 1999. Signal interactions in pathogen and insect attack: systemic plant mediated interactions between pathogens and herbivores of the tomato. Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54, 115-130. Sturz, A.V., Christie, B.R., Matheson, B.G., Arsenault, W.J., Buchanan, N.A., 1999. Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol. 48, 360-369. Tan, C.-W., Chiang, S.-Y., Ravuiwasa, K.T., Yadav, J., Hwang, S.-Y., 2012. Jasmonate-induced defense in tomato against Helicoverpa armigera depend in part on nutrient availability, but artificial induction via methyl jasmonate dose not. Arthropod Plant Interact. 6, 531-541. Tan, C.-W., Lo, J.-C., Yadav, J., Ravuiwasa, K.T., Hwang, S.-Y., 2011. Methyl jasmonate induced responses in four plant species and its effect on Spodoptera litura Fab. performance. J. Asia Pac. Entomol. 14, 263-269. Thaler, J.S., Stout, M.J., Karban, R., Duffey, S.S., 1996. Exogenous jasmonates simulate insect wounding in tomato plants, Lycopersicon esculentum, in the laboratory and field. J. Chem. Ecol. 22, 1767-1781. Thaler, J.S., Stout, M.J., Karban, R., Duffey, S.S., 2001. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol. Entomol. 26, 312-324. Traw, M.B., Dawson, T.E., 2002. Reduced performance of two specialist herbivores (Lepidoptera: Pieridae, Coleoptera: Chrysomelidae) on new leaves of damaged black mustard plants. Environ. Entomol. 31, 714-722. Tuzun, S., Kuć, J., 1985. Movement of a factor in tobacco infected with Peronospora tabacina Adam which systemically protects against blue mold. Physiol. Plant Pathol. 26, 321-330. Waldbauer, G.P., 1968. The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229-288. Yadav, J., Tan, C.-W., Hwang, S.-Y., 2010. Spatial variation in foliar chemicals within radish (Raphanus sativus) plants and their effects on performance of Spodoptera litura. Environ. Entomol. 39, 1990-1996. Zehnder, G., Kloepper, J., Yao, C., Wei, G., 1997. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Crysomelidae) by plant-growth-promoting-rhizobacteria. J. Econ. Entomol. 90, 391-396. Adesemoye, A.O., Kloepper, J.W., 2009. Plant-microbes interactions in enhanced fertilizer use efficiency. Appl. Microbiol. Biotechnol. 85, 1-12. Adler, L.S., Schmitt, J., Bowers, M.D., 1995. Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia 101, 75-85. Afzal, A., Bano, A., 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int. J. Agri. Biol. 10, 85-88. Almaghrabi, O.A., Massoud, S.I., Abdelmoneim, T.S., 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. Sci. 20, 57-60. Altieri, M.A., Nicholls, C.I., 2003. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Till. Res. 72, 203-211. Barto, K., Enright, S., Eyles, A., Wallis, C., Chorbadjian, R., Hansen, R., Herms, D.A., Bonello, P., Cipollini, D., 2008. Effects of fertilization and fungal and insect attack on systemic protein defenses of Austrian pine. J. Chem. Ecol. 34, 1392-1400. Bashan, Y., de-Bashan, L.E., 2005. Bacteria/plant growth-promotion, In: Hillel, D. (Ed.), Encyclopedia of soils in the environment. Elsevier, Oxford, U.K., pp. 103-115. Belimov, A.A., Dietz, K., 2000. Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol. Res. 155, 113-121. Bennett, R.N., Wallsgrove, R.M., 1994. Secondary metabolites in plant defence mechanisms. New Phytol. 127, 617-633. Berenbaum, M.R., Zangerl, A.R., Nitao, J.K., 1986. Constraints on chemical coevolution: wild parsnips and the parsnip webworm. Evolution 40, 1215-1228. Boddey, R.M., Dobereiner, J., 1988. Nitrogen fixation associated with grasses and cereals: recent results and perspectives for future research. Plant Soil. 108, 53-65. Borowicz, V.A., Albrecht, U., Mayer, R.T., 2003. Effects of nutrient supply on citrus resistance to root herbivory by Diaprepes abbreviatus L. (Coleoptera: Curculionidae). Environ. Entomol. 32, 1242-1250. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. Bryant, J.P., Chapin, F.S. III, Klein, D.R., 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357-368. Bybordi, A., Ebrahimian, E., 2013. Growth, yield and quality components of canola fertilized with urea and zeolite. Comm. Soil Sci. Plant Anal. 44, 2896-2915. Cakmakci, R., Kantar, F., Sahin, F., 2001. Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J. Plant. Nutr. Soil. Sci. 164, 527-531. Chen, C., Belanger, R., Benhamou, N., Paulitz, T.C., 2000. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol. Mol. Plant Pathol. 56, 13-23. Cipollini, D., Enright, S., Traw, M.B., Bergelson, J., 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol. Ecol. 13, 1643-1653. Clark, R.B., Zeto, S.K., 1996. Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol. Biochem. 28, 1495-1503. Dicke, M., Hilker, M., 2003. Induced plant defences: from molecular biology to evolutionary ecology. Basic Appl. Ecol. 4, 3-14. Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Vanderleyden, J., Dutto, P., Labandera-Gonzalez, C., Caballero-Mellado J., Aguirre, J.F., Kapulnik, Y., Brener, S., Burdman, S., Kadouri, D., Sarig, S., Okon, Y., 2001. Responses of agronomically important crops to inoculation with Azospirillum. Aust. J. Plant Physiol. 28, 871-879. Duffey, S.S., Stout, M.J., 1996. Antinutritive and toxic components of plant defense against insects. Archives Insect Biochem. Physiol. 32, 3-37. Egamberdiyeva, D., Hoflich, G., 2003. Influence of growth promoting bacteria on the growth of wheat in different soils and temperatures. Soil Bio. Biochem. 35, 973-978. Farrar, R.R. Jr, Barbour, J.D., Kennedy, G.G., 1989. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82, 593-598. Figueiredo, M.V.B., Seldin Lucy, de Araujo, F.F., Mariano, R.L.R., 2011. Plant growth promoting rhizobacteria: fundamentals and applications. Microbiol. Monogr. 18, 21-43. Glick, B.R., 2004. Bacterial ACC-deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 56, 291-312. Harrison, M.J., 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 59, 19-42. Hemming, J.D.C., Lindroth, R. L., 1999. Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. J. Chem. Ecol. 25, 1687-1714. Herms, D.A., 2002. Effects of fertilization on insect resistance of woody ornamental plants: reassessing an entrenched paradigm. Environ. Entomol. 31, 923-933. Herms, D.A., Mattson, W.J., 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67, 283-335. Hsu, Y.-T., Shen, T.-C., Hwang, S.-Y., 2009. Soil fertility management and pest responses: a comparison of organic and synthetic fertilization. J. Econ. Entomol. 102, 160-169. Hung, M.-H., Arun, A.B., Shen, F.-T., Rekha, P.D., Young, C.-C., 2005. Indigenous rhizobia associated with native shrubby legumes in Taiwan. Pedobiologia 49, 577-584. Hwang, S.-Y., Lindroth, R.L., 1997. Clonal variation in foliar chemistry of aspen: effects on gypsy moth and forest tent caterpillars. Oecologia 111, 99-108. Johnson, M.T.J., Agrawal, A.A., 2005. Plant genotype and environment interact to shape a diverse arthropod community on evening primrose (Oenothera biennis). Ecology 86, 874-885. Kamath, S., Bhattacharyya, D., Padukudru, C., Timmons, R.B., Tang, L., 2008. Surface chemistry influences implant-mediated host tissue responses. J. Biomed. Mater. Res. A. 86, 617-626. Karthiba, L., Saveetha, K., Suresh, S., Raguchander, T., Saravanakumar, D., Samiyappan, R., 2010. PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Manag. Sci. 66, 555-564. Karban, R., Baldwin, I.T., 1997. Induced responses to herbivory, University of Chicago Press, Chicago. Kokalis-Burelle, N., Vavrina, C.S., Rosskopf, E.N., Shelby, R.A., 2002. Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238, 257-266. Lai, W.-A., Rekha, P.D., Arun, A.B., Young, C.-C., 2008. Effect of mineral fertilizer, pig manure, and Azospirillum rugosum on growth and nutrient contents of Lactuca sativa L. Biol. Fertil. Soils 45, 155-164. Lucy, M., Reed, E., Glick, B.R., 2004. Applications of free living plant growth-promoting rhizobacteria. Anton. Leeuw. Int. J. Gen. Mol. Microbiol. 86, 1-25. Mevi-Schutz, J., Goverde, M., Erhardt, A., 2003. Effects of fertilization and elevated CO2 on larval food and butterfly nectar amino acid preference in Coenonympha pamphilus L. Behav. Ecol. Sociobio. 54, 36-43. Myers, J.H., 1985. Effect of physiological condition of the host plant on the ovipositional choice of the cabbage white butterfly, Pieris rapae. J. Anim. Ecol. 54, 193-204. Nakayan, P., Hameed, A., Singh, S., Young, L.-S., Hung, M.-H., Young, C.-C., 2013. Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization. Plant Soil 373, 301-315. Nichols, K.A., Wright, S.F., 2004. Contributions of fungi to soil organic matter in agroecosystems, In: Magdoff, F., Ray, R.W. (Ed.), Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp. 179-198. Pawlowska, T.E., Chaney, R.L., Chin, M., Charvat, I., 2000. Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Appl. Environ. Microbiol. 66, 2526-2530. Perić, V., Srebrić, M., Jankuloski, L., Jankulovska, M., Žilić, S., Kandić, V., Mladenović Drinić, S., 2009. The effects of nitrogen on protein, oil and trypsin inhibitor content of soybean. Genetika 41, 137-144. Pineda, A., Zheng, S.-J., van Loon, J.J.A., Pieterse, C.M.J., Dicke, M., 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci. 15, 507-514. Probanza, A., Lucas Garćia, J.A., Ruiz Palomino, M., Ramos, B., Gutierrez Manero, F.J., 2002. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilisCECT 5105). Appl. Soil Ecol. 20, 75-84. Prudic, K.L., Oliver, J.C., Bowers, M.D., 2005. Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore. Oecologia 143, 578-587. Qingwen, Z., Ping, L., Gang, W., Qingnian, C., 1998. On the biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting young seedling at plumular axis. Acta Phytophylacica Sinica 25, 209-212. Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V., Samiyappan, R., 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 20, 1-11. Rekha, P.D., Lai, W.-A., Arun, A.B., Young, C.-C., 2007. Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour. Technol. 98, 447-451. Ryan, C.A., 1990. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol. 28, 425-449. Ryan, J.D., Gregory, P., Tingey, W.M., 1982. Phenolic oxidase activites in glandular trichomes of Solanum berthaultii. Phytochemistry 21, 1885-1887. Saravanakumar, D., Muthumeena, K., Lavanya, N., Suresh, S., Rajendran, L., Raguchander, T., Samiyappan, R., 2007. Pseudomonas-induced defence molecules in rice plants against leaffolder (Cnaphalocrocis medinalis) pest. Pest Manag. Sci. 63, 714-721. Schoonhoven, L.M., Jermy, T., Van Loon, J.J.A., 1998. Insect-plant biology: from physiology to evolution. Chapman and Hall, London. Senthilraja, G., Anand, T., Durairaj, C., Kennedy, J.S., Suresh, S., Raguchander, T., Samiyappan, R., 2010. A new microbial consortia containing entomopathogenic fungus, Beauveria bassiana and plant growth promoting rhizobacteria, Pseudomonas fluorescens for simultaneous management of leafminers and collar rot disease in groundnut. Biocontrol Sci. Technol. 20, 449-464. Shanmugam, V., Kanoujia, N., 2011. Biological management of vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biol. Control 57, 85-93. Sikora, R.A., 1988. Interrelationship between plant health promoting rhizobacteria, plant parasitic nematodes and soil microorganisms. Med. Fac. Landbouww. Rijksuniv. Gent. 53, 867-878. Stout, M.J., Brovont, R.A., Duffey, S.S., 1998. Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. J. Chem. Ecol. 24, 945-963. Stout, M.J., Fidantsef, A.L., Duffey, S.S., Bostock, R.M., 1999. Signal interactions in pathogen and insect attack: systemic plant mediated interactions between pathogens and herbivores of the tomato. Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54, 115-130. Tan, C.-W., Chiang, S.-Y., Ravuiwasa, K.T., Yadav, J., Hwang, S.-Y., 2012. Jasmonate- induced defense in tomato against Helicoverpa armigera depend in part on nutrient availability, but artificial induction via methyl jasmonate dose not. Arthropod Plant Interact. 6, 531-541. Tan, C.-W., Lo, J.-C., Yadav, J., Ravuiwasa, K.T., Hwang, S.-Y., 2011. Methyl jasmonate induced responses in four plant species and its effect on Spodoptera litura Fab. performance. J. Asia Pac. Entomol. 14, 263-269. Thaler, J.S., Stout, M.J., Karban, R., Duffey, S.S., 1996. Exogenous jasmonates simulate insect wounding in tomato plants, Lycopersicon esculentum, in the laboratory and field. J. Chem. Ecol. 22, 1767-1781. Thaler, J.S., Stout, M.J., Karban, R., Duffey, S.S., 2001. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol. Entomol. 26, 312-324. van Dam, N.M., Horn, M., Mareš, M., Baldwin, I.T., 2001. Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuate. J. Chem. Ecol. 27, 547-568. Waldbauer, G.P., 1968. The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229-288. Yadav, J., Tan, C.-W., Hwang, S.-Y., 2010. Spatial variation in foliar chemicals within radish (Raphanus sativus) plants and their effects on performance of Spodoptera litura. Environ. Entomol. 39, 1990-1996. Zehnder, G., Kloepper, J., Yao, C., Wei, G., 1997. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Crysomelidae) by plant-growth-promoting-rhizobacteria. J. Econ. Entomol. 90, 391-396. Zehnder, G.W., Murphy, J.F., Sikora, E.J., Kloepper, J.W., 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107, 39-50. Zhu-Salzman, K., Luthe, D.S., Felton, G.W., 2008. Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol. 146, 852-858.
摘要: Plant growth promoting microorganisms (PGPMs) has various factors to influence their mechanism which could promote plant growth and foliar chemical compound. However, little is known about the interaction effect between PGPMs with different factors. The objective of this study assessed the interaction of PGPMs with various factors on plant growth, foliar chemistry, and subsequent Spodoptera litura feeding performance. PGPMs (a fungus and bacteria mixture) were inoculated with different factors; [soil type (field soil and commercial growth medium), plant species (cabbage and tomato), fertilizer level (none, half, and full), and methyl jasmonate (MeJA) (none-MeJA and MeJA)]. Foliage from different treated plants was fed to third-instar S. litura larva and collected to assess the plant growth parameters and foliar chemistry. The results indicated that the PGPMs inoculation had positive effect on plant growth. PGPMs affect plants' nutrient compounds and had negative effect on S. litura performance. Moreover, PGPMs species will perform differently in different plant species. PGPMs would perform best when inoculated in the commercial soil which contains suitable nutrients. In addition, fertilizer and PGPMs has positive effect on plant that the combined fungus Meyerozyma guilliermondii and fertilizer treatment promoted the greatest plant growth; but the effects on insect are opposite. Moreover, MeJA application has strong effect than PGPMs on plant growth and insect performance. MeJA application alone triggered a remarkable plant-defense response and exerted a significant effect on insect herbivores. The interaction between MeJA and PGPM applications might occur and affect certain plant-defensive chemicals. In summary, my study suggests that the function of PGPMs might be affected by various factors. Therefore, the future use of PGPMs should consider the soil type, plant species, fertilizer level, and plant environment before application to obtain their appropriate efficacy.
微生物肥料中之Plant growth promoting microorganisms (PGPMs)可促進植物生長並改變植物體內之化學成分,但在自然環境當中其會受到許多的因子所影響,並且可能進而影響其效果。在過去,很少研究將PGPMs與多種因子同時進行討論並探討其彼此之交互關係,因此在本試驗中以PGPMs搭配不同的栽培介質(田土和滿地王介質)、植物(甘藍和番茄)、施肥程度(無施肥、半肥和全肥)以及甲基茉莉花酸(methyl jasmonate ,MeJA)施用的有無,探討在不同情況下對於植物生長表現以及化學物質含量之影響,並使用經過不同處理後之植物餵食斜紋夜蛾(Spodoptera litura)三齡幼蟲,觀察其對於昆蟲之影響。試驗之結果指出,不同的PGPMs對於不同的植物種類具有不同的影響,整體來說,PGPMs對於植物之生長表現有正向的影響,也會造成植物營養物質含量之改變,並且會導致昆蟲的生長表現變差。當PGPMs施用於滿地王介質中,由於其營養成分含量較高,相較施用於田土之處理,植物生長表現受到顯著的促進。在肥料的部分,肥料與PGPMs皆可促進植物的生長,尤其當PGPMs中之Meyerozyma guilliermondii與肥料結合後,植物可得到最好的生長表現;然而,在昆蟲生長表現部分,肥料與PGPMs之影響則相反,肥料的施用會使得昆蟲生長表現較佳。此外,當MeJA與PGPMs同時使用時,MeJA的施用會顯著誘導植物體內防禦物質的產生,並且對於斜紋夜蛾幼蟲造成顯著的負面影響,而MeJA的影響會顯著的大於PGPMs之影響。總結結果可發現,PGPMs之效果會受到其他因子所影響,因此,未來如果要施用PGPMs必須考慮到土壤、植物種類、施肥程度以及其他環境因子之影響,並在適當的條件中選用適當的PGPMs,以達到最好的效果。
URI: http://hdl.handle.net/11455/89083
其他識別: U0005-1601201520381000
文章公開時間: 2017-01-21
Appears in Collections:昆蟲學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.