Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89095
標題: The effect of methyl jasmonate acid on tomato seedling and subsequently on Spodoptera litura
甲基茉莉花酸處理番茄種子對幼苗及斜紋夜蛾之影響
作者: 彭冠華
Guan-Hua Pung
關鍵字: Spodoptera litura
Methyl jasmonic acid
Tomato
Short- term growth performance
Seedtreatment
斜紋夜蛾
甲基茉莉花酸
番茄
短期生長表現
種子處理
引用: 王仕賢、鄭安秀、陳文雄。2004。小果番茄栽培管理。頁1。李月寶 (編輯者)。行政院農委會台南區農業改良場。台南。 郭孚燿。2002。番茄栽培。台中區農業專訊 38: 15~19。 費雯綺、王喻其。2007。植物保護手冊─蔬菜篇。台北。行政院農委會農業藥物毒物試驗所。229頁。 劉達修。2001。台灣花卉 (切花類) 主要害蟲簡介。頁47。石正人 (編輯者)。植物重要防檢疫害蟲診斷鑑定研習會,委會動植物防檢局。台灣。 Bellinger BG. 1996. Pest resistance to pesticides. Department of entomology, Clemson university. Bernays EA, Chapman RF. 1994. Host plant selection by phytophagous insects. Chapman & Hall, New York. 312 pp. Bortolotti L, Montanari R, Marcelino J, Medrzycki P, Maini S, Porrini C. 2003. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull Insectology 56: 63-67. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. Bushway RJ, Perkins LB, Paradis LR, Vanderpan S. 1994. High-performance liquid chromatographic determination of the tomato glycoalkaloid, tomatine, in green and red tomatoes. J Agr Food Chem 42: 2824-2829. Cipollini D. 2006. Consequences of the overproduction of methyl jasmonate on seed production, tolerance to defoliation and competitive effect and response of Arabidopsis thaliana. New Phyto 173: 146-153. Cipollini DF, Redman AM. 1999. Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. J Chem Ecol 25: 271-81. Constabel CP, Ryan CA. 1998. A survey of wound- and methyl jasmonate induced leaf polyphenol oxidase in crop plants. Phytochemistry 47: 507-511. Corbineau F, Rudnickiz RM, Come D. 1988. The effects of methyl jasmonate on sunflower (Helianthus annuus) seed germination and seedling development. Plant Growth Regul 7: 157-169. Creelman RA, Mullet JE. 1997. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Phys 48: 355-81. Farmer EE, Ryan CA. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. P Nati Acad Sci USA 87: 7713-7716. Farmer EE, Ryan CA. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129-134. Farrar RRJ, Barbour JD, Kennedy GG. 1989. Quantifying food consumption and growth in insects. Ann Entomol Soc Am 82: 593-598. Felton GW. 2005. Indigestion is a plant's best defense. P Nati Acad Sci USA 102: 18771-18772. Go'mez S, Ferrieri RA, Schueller M, Orians CM. 2010. Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phyto 188: 835-844. Hodgson C, Martin JH. 2001. Three noteworthy scale insects (Hemiptera: Coccoidea) from Hong Kong and Singapore, including Cribropulvinaria tailungensis, new genus and species (Coccidae), and the status of the cycad- feeding Aulacaspis yasumatsui (Diaspididae). Raffles B Zool 49: 227-250. Kaloshian I, Walling LL. 2005. Hemipterans as plant pathogens. Annu Rev Phytopathol 43: 491-521. Koiwa H, Bressan RA, Hasegawa PM. 1997. Regulation of protease inhibitors and plant defense. Trends Plant Sci 2: 1360-1385. Lee TM, Lin YH. 1995. Trypsin inhibitor and trypsin-like protease activity in air or submergence-grown rice (Oryza sativa) coleoptiles. Plant Sci 106: 43-54. Liang YS, Choi YH, Kim HK, Linthorst HJM, Verpoorte R. 2006. Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. Phytochemistry 67: 2503-2511. Linkies A, Leubner-Metzger. 2012. Beyond gibberellins and abscisic aicd: how ethylene and jasmonates control seed germination. Plant Cell Rep 31: 253-270. Li L, Li C, Howe GA. 2001. Genetic analysis of wound signaling in tomato. Evidence for a dual role of jasmonic acid in defense and female fertility. Plant physiol 127: 1414-1417. Maki H, Morohashi Y. 2006. Development of polyphenol oxidase activity in the micropylar endosperm of tomato seeds. J Plant Physiol 163: 1-10. Mandaokar AD, Goyal RK, Shukla A, Bisaria S, Bhalla R, Reddy VS, Chaurasia A, Sharma RP, Altosaar I, Kumar PA. 2000. Transgenic tomato plants resistant to fruit borer (Helicoverpa armigera). Crop protection 19: 307-312. Nojavan-Asghari M, Ishizawa K. 1998. Inhibitory effects of methyl jasmonate on the germination and ethylene production in cocklebur seeds. J Plant Growth Regul 17: 13-18. Norastehnia A, Sajedi RH, Nojavan-Asghari M. 2007. Inhibitory effect of methyl jasmonate on seed germination in maize (Zea mays): effect on α-amylase activity and ethylene production. Gen Appl Plant physiol 33: 13- 23. Omer AD, Thaler JS, Granett J , Karban R. 2000. Jasmonic acid induced resistance in grapevines to a root and leaf feeder. J Econ Entomol 93: 840-845. Ryan CA, Gregory P, Tingey W. 1982. Phenolic oxidase activities in glandular trichomes of Solanum berthaultii. Phytochemistry 21: 1885-1887. Shukla A, Patel PR. 2011. Biology, food utilization and seasonal incidence of Spodoptera litura on banana cv. grand naine. Res J Agric Sci 2: 49-51. Smart LE, Martin JL, Limpalaer M, Bruce TJA, Pickett JA. 2013. Responses of herbivore and predatory mites to tomato plants exposed to jasmonic acid seed treatment. J Chem Ecol 39: 1297-1300. Staswick PE, Su W, Howell SH. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. P Nati Acad Sci USA 89: 6837-6840. Tan CW, Chiang SY, Ravuiwasa KT, Yadav J, Hwang SY. 2012. Jasmonate induced defenses in tomato against Helicoverpa armigera depend in part on nutrient availability, but artificial induction via methyl jasmonate does not. Arthropod plant Inte 6: 531-541. Tan CW, Lo JC, Yadav J, Ravuiwasa KT, Hwang SY. 2011. Methyl jasmonate induced responses in four plant species and its effect on Spodoptera litura performance. J Asia Pac Entomol 14: 263-269. Thipyapong P, Steffens JC. 1997. Tomato polyphenol oxidase. Plant Physiol 115: 409-418. Waldbauer GP. 1968. The consumption and ultilization of food by insect. Adv Insect Physiol 5: 229-288. Wilen RW, Rooijen GJHV, Pearce DW, Pharis RP, Holbrook LA, Moloney MM. 1991. Effects of jasmonic acid on embryo-specific processes in Brassica and Linum oilseeds. Plant Physiol 95: 399-405. Worrall D, Holroyd GH, Moore JP, Glowacz M, Croft P, Taylor JE, Paul ND, Michael RR. 2012. Treating seeds with activators of plant defence generates longlasting priming of resistance to pests and pathogens. New phyto 193: 770-778 Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H. 2004. Transcriptional regulation of sorghum defense determinants against a phloem feeding aphid. Plant Physiol 134: 420-431.
摘要: To protect themselves, plant may response to insect's damage through two kinds of defensive mechanisms (constitutive and inducible). Inducible defense appear just after plants were attacked by herbivores through the methyl jasmonic acid (MeJA) systematic action. Previous studies indicated that application of MeJA on plant leaves or the direct insect damage may cause plant's production of some defense-related substances, such as polyphenol oxidase (PPO) and trypsin inhibitor (TI) which may against insect's attack. Many research have been conducted to evaluate the effects of sparying MeJA on plant leaf on plants and subsequently on insect herbivores; but only limited studies have been conducted to investigate the effects of MeJA on seeds' germination and the prime effects against insect herbivores. In this study, tomato seeds were soaked in MeJA of different concentrations and different soaking time. Then, the plant's defensive proteins, tomato's performance and short- term growth performance of Spodoptera litura were measured. Results showed that PPO increased by treated with MeJA for 1 hour, while treated with MeJA for 1 day could decerase PPO and TI content. High MeJA concentration could decrease tomato seed germination ration and caused bad larval performance, especially in long time treatment. In summary, we found MeJA could decrease larval performance and tomato's growth performance. Since this experiment was only tested for seedlings in greenhouse, more studies are needed for the practical use of this idea in the field.
植物對於昆蟲之防禦反應,依照其產生方式不同可將其分為兩大類:組成型及誘導型。誘導型防禦僅於植物受到傷害時才誘發產生,例如使用甲基茉莉花酸(Methyl jasmonic acid, MeJA) 在植物葉片上所誘發出的抗蟲反應即是一種誘導型防禦。前人研究指出,對植物葉片施用MeJA及給予直接傷害會促使植物產生抗蟲物質,如多酚氧化酵素 (Polyphenol oxidase, PPO) 及胰蛋白酶抑制劑 (Trypsin inhibitor, TI) 等以達到抗蟲效果。有關MeJA處理植物葉片後,探討其抗蟲效果之研究相當多,但測試其對於種子處理後之發芽及其後之幼苗抗蟲能力的研究卻非常少。本實驗採用番茄種子浸泡於不同濃度之MeJA,處理兩種不同浸泡時間後,測量番茄幼苗之PPO及TI含量、植株之生長表現及斜紋夜蛾幼蟲取食各處理組後之短期生長表現。實驗結果顯示,短期浸泡MeJA後番茄PPO上升,但長期浸泡MeJA則使PPO及TI下降;在兩個浸泡時間皆觀察到施用高濃度MeJA會造成番茄種子發芽率及番茄乾重下降,且長期浸泡MeJA造成的影響比短期更為顯著,浸泡MeJA亦使斜紋夜蛾幼蟲生長在較初期的時間受到負面影響。總結實驗結果,番茄種子施用MeJA後,能使斜紋夜蛾幼蟲之短期生長表現下降,同時會使植株生長表現下降。由於本實驗只針對溫室幼苗進行測試,在田間之實用部分,仍需更多探討。
URI: http://hdl.handle.net/11455/89095
其他識別: U0005-1111201416421100
文章公開時間: 2014-11-17
Appears in Collections:昆蟲學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.