請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/89097
標題: Effect of formothion on the expression of the transcription factor cap'n'collar and cytochrome P450s in the oriental fruit fly Bactrocera dorsalis (Hendel)
福木松對東方果實蠅體內轉錄因子cap'n'collar及細胞色素P450基因表現之影響
作者: 范展嘉
Zhan-Jia Fan
關鍵字: metabolic resistance mechanism
cap and collar
xenobiotic
Bactrocera dorsalis
代謝抗性機制
cap and collar
異生物質
東方果實蠅
引用: Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R., Sabzevari, O. 2003. Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum. Exp. Toxicol. 22: 205-211. Alout, H., Berthomieu, A., Hadjivassilis, A., Weill, M. 2007. A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus. Insect Biochem. Mol. Biol. 37: 41-47. Amichot, M., Tares, S., Brun-Barale, A., Arthaud, L., Bride, J.M., Berge, J.B. 2004. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur. J. Biochem. 271: 1250-1257. Bogwitz, M.R., Chung, H., Magoc, L., Rigby, S., Wong, W., O''Keefe, M., McKenzie, J.A., Batterham, P., Daborn, P.J. 2005. Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 102: 12807-12812. Cassanelli, S., Reyes, M., Rault, M., Carlo Manicardi, G., Sauphanor, B. 2006. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.). Insect Biochem. Mol. Biol 36: 642-653. Catania, F., Kauer, M.O., Daborn, P.J., Yen, J.L., Ffrench-Constant, R.H., Schlotterer, C. 2004. World-wide survey of an Accord insertion and its association with DDT resistance in Drosophila melanogaster. Mol. Ecol. 13: 2491-2504. Charleston, D.S., Kfir, R., Vet, L.E., Dicke, M. 2005. Behavior responses of diamond back moth Plutella xylostella (Lepidoptera: Plutellidae) to extracts derived from Melia azedarach and Azadirachta indica. Bull. Entomol. Res. 95: 457-465. Chelvanayagam, G., Parker, M.W., Board, P.G. 2001. Fly fishing for GSTs: a unified nomenclature for mammalian and insect glutathione transferases. Chem. Biol. Interact. 133: 256-260. Chen, W., Sun, Z., Wang, X.J., Jiang, T., Huang, Z., Fang, D., Zhang, D.D. 2009. Direct interaction between Nrf2 and p21 (Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol. Cell 34: 663-673. Chiu, H.T. 1978. Studies on the improvement of mass rearing for Oriental fruit flies. Plant Protection Bul. 20: 87-92. Chowdhry, S., Zhang, Y., McMahon, M., Sutherland, C., Cuadrado, A., Hayes, J.D. 2013. Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32: 3765-3781. Claudianos, C., Ranson, H., Johnson, R.M., Biswas, S., Schuler, M.A. 2006. A deficit of detoxification enzymes pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 5: 615-636. Claudianos, C., Russell, R.J., Oakeshott, J.G. 1999. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem. Mol. Biol. 29: 675-686. Copple, I.M., Lister, A., Obeng, A.D., Kitteringham, N.R., Jenkins, R.E., Layfield, R., Foster, B.J., Goldring, C.E., Park, B.K. 2010. Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J. Biol. Chem. 285: 16782-16788. Coulcher, J.F., Telford, M.J. 2012. Cap'n'collar differentiates the mandible from the maxilla in the beetle Tribolium castaneum. Evol Dev 3: 1-16. Daborn, P.J., Yen, J.L., Bogwitz, M.R., Le Goff, G., Feil, E., Jeffers, S., Tijet, N., Perry, T., Heckel, D., Batterham, P., Feyereisen, R., Wilson, T.G., ffrench-Constant, R.H. 2002. A single p450 allele associated with insecticide resistance in Drosophila. Science 297: 2253-2256. Delye, C., Bousset, L., Corio-Costet, M.F. 1998. PCR cloning and detection of point mutations in the eburicol 14alpha-demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei, a 'recalcitrant' fungus. Curr. Genet. 34: 399-403. Deng, H., Kerppola, T.K. 2013. Regulation of Drosophila metamorphosis by xenobiotic response regulators. PLoS Genet. 9: e1003263. DeNicola, G.M., Karreth, F.A., Humpton, T.J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K.H., Yeo, C.J., Calhoun, E.S., Scrimieri, F., Winter, J.M., Hruban, R.H., Iacobuzio-Donahue, C., Kern, S.E., Blair, I.A., Tuveson, D.A. 2011. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475: 106-109. Dombrowski, S.M., Krishnan, R., Witte, M., Maitra, S., Diesing, C., Waters, L.C., Ganguly, R. 1998. Constitutive and barbital-induced expression of the Cyp6a2 allele of a high producer strain of CYP6A2 in the genetic background of a low producer strain. Gene 221: 69-77. Enayati, A.A., Ranson, H., Hemingway, J. 2005. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol. 14: 3-8. Faraonio, R., Vergara, P., Di Marzo, D., Pierantoni, M.G., Napolitano, M., Russo, T., Cimino, F. 2006. p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J. Biol. Chem. 281: 39776-39784. Farnham, A.W. 1973. Genetics of resistance of pyrethroid selected house flies, Musca domestica. J. Econ. Entomol. 4: 513-520. Feyereisen, R. 2005. Insect cytochrome P450. Annu. Rev. Entomol. 44: 507-533. Field, L.M. 2000. Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer). Biochem. J. 349: 863-868. Furukawa, M., Xiong, Y. 2005. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 25: 162-171. Gold, R., Kappos, L., Arnold, D.L., Bar-Or, A., Giovannoni, G., Selmaj, K., Tornatore, C., Sweetser, M.T., Yang, M., Sheikh, S.I., Dawson, K.T. 2012. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367: 1098-1107. Gottesman, M.M., Fojo, T., Bate, S.E. 2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2: 48-58. Grimberg, K.B., Beskow, A., Lundin, D., Davis, M.M., Young, P. 2011. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome. Mol. Cell. Biol. 31: 897-909. Hast, B.E., Goldfarb, D., Mulvaney, K.M., Hast, M.A., Siesser, P.F., Yan, F., Hayes, D.N., Major, M.B. 2013. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res. 73: 2199-2210. Hawkes, N.J., Hemingway, J. 2002. Analysis of the promoters for the β-esterase genes associated with insecticide resistance in the mosquito Culex quinquefasciatus. Biochim. Biophys. Acta 1574: 51-62. Hemingway, J., Miyamoto, J., Herath, P.R.J. 1991. A possible novel link between organophosphorus and DDT insecticide resistance genes and in Anopheles supporting evidence from fenitrothion metabolism studies. Pestic. Biochem. Physiol. 39: 45-56. Hemingway, J., Hawkes, N., Prapanthadara, L., Jayawardenal, K.G.I., Ranson, H. 1998. The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. Phil. Trans. R. Soc. 353: 1695-1699. Hirotsu, Y., Katsuoka, F., Funayama, R., Nagashima, T., Nishida, Y., Nakayama, K., Engel, J.D., Yamamoto, M. 2012. Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res. 40: 10228-10239. Hsu, J.C., Feng, H.T., Wu, W.J. 2004. Resistance and synergistic effects of insecticides in Bactrocera dorsalis (Diptera: Tephritidae) in Taiwan. J. Econ. Entomol. 97: 1682-1688. Hsu, J.C., Haymer, D., Wu, W., Feng, H. 2006. Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem. Mol. Biol. 36: 396-402. Hsu, J.C., Chien, T.Y., Hu, C.C., Chen, M.J., Wu, W.J., Feng, H.T., Haymer, D.S., Chen, C.Y. 2012. Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome. PLoS One 7: e40950. Huang, H.S., Hu, N.T., Yao, Y.E., Wu, C.Y., Chiang, S.W. 1998. Molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochem. Mol. Biol. 28: 651-658. Inoue, D., Suzuki, T., Mitsuishi, Y., Miki, Y., Suzuki, S., Sugawara, S., Watanabe, M., Sakurada, A., Endo, C., Uruno, A., Sasano, H., Nakagawa, T., Satoh, K., Tanaka, N., Kubo, H., Motohashi, H., Yamamoto, M. 2012. Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci. 103: 760-766. Jaramillo, M.C., Zhang, D.D. 2013. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27: 2179-2191. Jeong, W.S., Jun, M., Kong, A.N. 2006. Nrf2: A potential molecular target for cancer chemoprevention by natural compounds. Antioxid. Redox. Signal. 8: 99-106. Jiang, T., Chen, N., Zhao, F., Wang, X.J., Kong, B., Zheng, W., Zhang, D.D. 2010. High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res. 70: 5486-5496. Karunaratne, S.H.P.P., Vaughan, A., Paton, M.G., Hemingway, J. 1998. Amplification of a serine esterase gene is involved in insecticide resistance in Sri Lankan Culex tritaeniorhynchus. Insect Mol. Biol. 7: 307-315. Kasai, S., Scott, J.G. 2001. Expression and regulation of CYP6D3 in the house fly, Musca domestica (L.). Mol. Biol. 32: 1-8. Kasai, S., Weerashinghe, I.S., Shono, T., Yamakawa, M. 2000. Molecular cloning, nucleotide sequence and gene expression of a cytochrome P450 (CYP6F1) from the pyrethroid resistant mosquito, Culex quinquefasciatus say. Insect Biochem. Mol. Biol. 30: 163-171. Kensler, T.W., Wakabayashi, N. 2010. Nrf2: friend or foe for chemoprevention? Carcinogenesis 31: 90-99. Kensler, T.W., Wakabayashi, N., Biswal, S. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47: 89-116. Kranthi, K.R., Jadhav, D., Wanjari, R., Kranthi, S., Russell, D. 2001. Pyrethroid resistance and mechanisms of resistance in field strains of Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 94: 253-263. Lau, A., Villeneuve, N.F., Sun, Z., Wong, P.K., Zhang, D.D. 2008. Dual roles of Nrf2 in cancer. Pharmacol. Res. 58: 262-270. Lau, A., Zheng, Y., Tao, S., Wang, H., Whitman, S.A., White, E., Zhang, D.D. 2013. Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol. Cell. Biol. 33: 2436-2446. Li, F., Han, Z. 2004. Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochem. Mol. Biol. 34: 397-405. Li, X., Schuler, M.A., Berenbaum, M.R. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52: 231-253. Li, X., Zangerl, A.R., Schuler, M.A., Berenbaum, M.R. 2000. Cross-resistance to alphacypermethrin after xanthotoxin ingestion in Helicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol. 93: 18-25. Lister, A., Nedjadi, T., Kitteringham, N.R., Campbell, F., Costello, E., Lloyd, B., Copple, I.M., Williams, S., Owen, A., Neoptolemos, J.P., Goldring, C.E., Park, B.K. 2011. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol. Cancer 10: 37. Liu, H., Xu, Q., Zhang, L., Liu, N. 2005. Chlorpyrifos resistance in mosquito Culex quinquefasciatus. J. Med. Entomol. 42: 815-820. Lo, S.C., Li, X., Henzl, M.T., Beamer, L.J., Hannink, M. 2006. Structure of the Keap1/Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J. 25: 3605-3617. Magesh, S., Chen, Y., Hu, L. 2012. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med. Res. Rev. 32: 687-726. Maitra, S., Dombrowski, S.M., Basu, M., Raustol, O., Waters, L.C., Ganguly, R. 2000. Factors on the third chromosome affect the level of Cyp6a2 and Cyp6a8 expression in Drosophila melanogaster. Gene 248: 147-156. Maitra, S., Price, C., Ganguly, R. 2002. Cyp6a8 of Drosophila melanogaster gene structure, and sequence and functional analysis of the upstream DNA. Insect Biochem. Mol. Biol. 32: 859-870. Mannervik, B., Alin, P., Guthenberg, C. 1985. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc. Natl. Acad. Sci. U.S.A. 21: 7202-7206. McGinnis, N., Ragnhildstveit, E., Veraksa, A., McGinnis, W. 1998. A cap ''n'' collar protein isoform contains a selective Hox repressor function. Development 125: 4553-4564. McMahon, M., Lamont, D.J., Beattie, K.A., Hayes, J.D. 2010. Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc. Natl. Acad. Sci. U.S.A. 107: 18838-18843. McMahon, M., Thomas, N., Itoh, K., Yamamoto, M., Hayes, J.D. 2006. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a 'tethering' mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 281: 24756-24768. Meunier, B., de Visser, S.P., Shaik, S. 2004. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem. Rev. 104: 3947-3980. Misra, J.R., Horner, M.A., Lam, G., Thummel, C.S. 2011. Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev. 25: 1796-1806. Mohler, J., Mahaffey, J.W., Deutsch, E., Vani, K. 1995. Control of Drosophila head segment identity by the bZIP homeotic gene cnc. Development 121: 237-247. Mohler, J., Vani, K., Leung, S., Epstein, A. 1991. Segmentally restricted, cephalic expression of a leucine zipper gene during Drosophila embryogenesis. Mech. Dev. 34: 3-10. Moi, P., Chan, K., Asunis, I., Cao, A., Kan, Y.W. 1994. Isolation of NFE2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the b-globin locus control region. Proc. Natl. Acad. Sci. U.S.A. 91: 9926-9930. Nachmansohn, D., Wilson, I.B. 1951. The enzymic hydrolysis and synthesis of acetylcholine. Adv. Enzymol. Relat. Subj. Biochem 12: 259-339. Nguyen, T., Nioi, P., Pickett, C.B. 2009. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284: 13291-13295. Nguyen, T., Sherratt, P.J., Huang, H.C., Yang, C.S., Pickett, C.B. 2003. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element degradation of Nrf2 by the 26S proteasome. J. Biol. Chem. 278: 4536-4541. Ogura, T., Tong, K.I., Mio, K., Maruyama, Y., Kurokawa, H., Sato, C., Yamamoto, M. 2010. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc. Natl. Acad. Sci. U.S.A. 107: 2842-2847. Okazaki, Y., Katayama, T. 2003. Effects of dietary carbohydrate and myo-inositol on metabolic changes in rats fed 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT). J. Nutr. Biochem. 14: 81-89. Ooi, A., Wong, J.C., Petillo, D., Roossien, D., Perrier-Trudova, V., Whitten, D., Min, B.W., Tan, M.H., Zhang, Z., Yang, X.J., Zhou, M., Gardie, B., Molinie, V., Richard, S., Tan, P.H., Teh, B.T., Furge, K.A. 2011. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20: 511-523. Oppenoorth, F.J., Van Asperen, K. 1960. Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science 132: 298-299. Ottea, J.A., Ibrahim, S., Youins, A.M., Young, R.J., Leonard, B.R., McCaffery, A.R. 1995. Biochemical and physiological mechanisms of pyrethroid resistance in Heliothis virescens (F). Pestic. Biochem. Physiol. 51: 117-128. Pedra, J.H., Festucci-Buselli, R.A., Sun, W., Muir, W.M., Scharf, M.E., Pittendrigh, B.R. 2005. Profiling of abundant proteins associated with dichlorodiphenyltrichloroethane resistance in Drosophila melanogaster. Proteomics 5: 258-268. Phillips, J.T., Fox, R.J. 2013. BG-12 in multiple sclerosis. Semin. Neurol. 33: 56-65. Plapp, F.W., Hoyer, R.F. 1968. Insecticide resistance in the house fly: decreased rate of absorption as the mechanism of action of a gene that acts as an intensifier of resistance. J. Econ. Entomol. 61: 1298-1303. Rajurkar, R.B., Khan, Z.H., Gujar, G.T. 2003. Studies on levels of glutathione S-transferase, its isolation and purification from Helicoverpa armigera. Curr. Sci. 85: 1355-1360. Ranson, H., Claudianos, C., Ortelli, F., Abgrall, C., Hemingway, J., Sharakhova, M.V., Unger, M.F., Collins, F.H., Feyereisen, R. 2002. Evolution of supergene families associated with insecticide resistance. Science 298: 179-181. Ranson, H., Hemingway, J. 2005. Mosquito glutathione transferases. Methods Enzymol. 401: 226-241. Ranson, H., Rossiter, L., Ortelli, F., Jesen, B., Wang, X. 2001. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem. J. 359: 295-304. Raymond, M., Berticat, C., Weill, M., Pasteur, N., Chevillon, C. 2001. Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation. Genetica 112-113: 287-296. Raymond, M., Chevillon, C., Guillemaud, T., Lenormand, T., Pasteur, N. 1998. An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353: 1-5. Ren, X., Han, Z., Wang, Y. 2002. Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hubner). Arch. Insect Biochem. Physiol. 51: 103-110. Rose, R.L., Goh, D., Thompson, D.M., Verma, K.D., Heckel, D.G., Gahan, L.J., Roe, R.M., Hodgson, E. 1997. Cytochrome P450 (CYP)9A1 in Heliothis virescens: the first member of a new CYP family. Insect Biochem. Mol. Biol. 27: 605-615. Scharf, M.E., Siegfried, B.D., Meinke, L.J., Chandler, L.D. 2000. Fipronil metabolism, oxidative sulfone formation and toxicity among organophosphate and carbamate-resistant and susceptible western corn rootworm populations. Pest. Manag. Sci. 56: 757-766. Schlenke, T.A., Begun, D.J. 2004. Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc. Natl. Acad. Sci. U.S.A. 101: 1626-1631. Scott, J.G. 1999. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. 29: 757-777. Seifert, J., Scott, J.G. 2002. The CYP6D1v1 allele is associated with insecticide resistance in the house fly, Musca domestica. Pestic. Biochem. Physiol. 72: 40-44. Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., Silman, I. 1991. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253: 872. Suzuki, T., Shibata, T., Takaya, K., Shiraishi, K., Kohno, T., Kunitoh, H., Tsuta, K., Furuta, K., Goto, K., Hosoda, F., Sakamoto, H., Motohashi, H., Yamamoto, M. 2013. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels. Mol. Cell. Biol. 33: 2402-2412. Sykiotis, G.P., Bohmann, D. 2008. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev. Cell 14: 76-85. Syvanen, M., Zhou, Z.H., Wang, J.Y. 1994. Glutathione transferase gene family from the Musca domestica. Mol. Gen. Genet. 245: 25-31. Taguchi, K., Fujikawa, N., Komatsu, M., Ishii, T., Unno, M., Akaike, T., Motohashi, H., Yamamoto, M. 2012. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc. Natl. Acad. Sci. U.S.A. 109: 13561-13566. Tijet, N., Helvig, C., Feyereisen, R. 2001. The cytochrome P450 gene superfamily in Drosophila melanogaster annotation, intron-exon organization and phylogeny. Gene 262: 189-198. Tong, K.I., Kobayashi, A., Katsuoka, F., Yamamoto, M. 2006. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol. Chem. 387: 1311-1320. Tong, K.I., Padmanabhan, B., Kobayashi, A., Shang, C., Hirotsu, Y., Yokoyama, S., Yamamoto, M. 2007. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol. Cell. Biol. 27: 7511-7521. Tu, C.P., Akg?l, B. 2005. Drosophila glutathione S?transferases. Methods Enzymol. 401: 204-226. Vaughan, A., Chadee, D.D., ffrench-Constant, R. 1998. Biochemical monitoring of organophosphorus and carbamate insecticide resistance in Aedes aegypti mosquitoes from Trinidad. Med. Vet. Entomol. 12: 318-321. Vontas, J., Small, J.G., Hemingway, J. 2001. Glutathione-S-transferases as antioxidant defense agents confer pyrethroid resistance in Nilaparvata lugens. Biochem. J. 357: 65-72. Vontas, J.D., Small, G.J., Hemingway, J. 2000. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (St?l). Insect Mol. Biol. 9: 665-660. Vontas, J.G., Hejazi, M.J., Hawkes, N.J., Cosmidis, N., Loukas, M., Hemingway, J. 2002a. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol. Biol. 11: 329-336. Vontas, J.G., Small, G.J., Nikou, D.C., Ranson, H., Hemingway, J. 2002b. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem. J. 362: 329-337. Wang, C., Scharf, M.E., Bennett, G.W. 2004. Behavioral and physiological resistance of the German cockroach to gel baits (Blattodea: Blattellidae). J. Econ. Entomol. 97: 2067-2072. Wang, H., Liu, K., Geng, M., Gao, P., Wu, X., Hai, Y., Li, Y., Luo, L., Hayes, J.D., Wang, X.J., Tang, X. 2013. RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res. 73: 3097-3108. Weill, M., Malcolm, C., Chandre, F., Mogensen, K., Berthomieu, A., Marquine, M., Raymond, M. 2004. The unique mutation in ace-1 givung high insecticide resistance is easily detectable in mosquito vectors. Insect Mol. Biol. 13: 1-7. Whalon, M.E., Mota-Sanchez, D., R., H.M. 2008. Global Pesticide Resistance in Arthropods. CABI, Wallingford, United Kingdom. Yates, M.S., Tran, Q.T., Dolan, P.M., Osburn, W.O., Shin, S., McCulloch, C.C., Silkworth, J.B., Taguchi, K., Yamamoto, M., Williams, C.R., Liby, K.T., Sporn, M.B., Sutter, T.R., Kensler, T.W. 2009. Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis 30: 1024-1031. Zhu, K.Y., Clark, J.M. 1997. Validation of a point mutation of acetylcholinesterase in Colorado potato beetle by polymerase chain reaction coupled to enzyme inhibition assay. Pestic. Biochem. Physiol. 57: 28-35. Zhu, Y.C., Dowdy, A.K., Baker, J.E. 1999. Detection of single-base substitution in an esterase gene and its linkage to malathion resistance in the parasitoid (Hymenoptera: Pteromalidae). Pestic. Sci. 55: 398-404. Zhu, Y.C., Snodgrass, G.L. 2003. Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae) having different susceptibilities to pyrethroid insecticide. Insect Mol. Biol. 12: 39-49.
摘要: Insecticide resistance has become an important global issue for many years. The resistant mechanisms in insects have been found that it can be raised up through either target site insensitivity or elevation of metabolic detoxification. The later is resulted from the increase of expression of detoxification-related genes to metabolize and excrete xenobiotics out of the body. Expressions of detoxification-related genes normally are determined by whether the transcription factors bind to the upstream regulatory element of the genes. In this study, one of important xenobiotic-activated transcription regulators, i.e. cap and collar C (cncC), was investigated. The cDNA of cncC in Bactrocera dorsalis, named BdcncC (accession number: KJ957012), was first isolated with PCR based on the partial sequence selected from a B. dorsalis Next Generation Sequencing (NGS) library. The sequence of BdcncC was 3493 bp encoded an open reading frame composed of 1123 amino acids. Two conserved regions of cnc, i.e. an ETGE motif and a basic leucine zipper domain, were identified in BdcncC. The BdcncC expression in formothion resistant strain (FR) was 4.5-fold higher than that in formothion susceptible strain (FS). Additionally, the BdcncC expression in both strains were induced in 1 h after formothion treatment, however, FS cncC expression were significantly higher than that of FR. The expression of detoxification genes, cytochrome P450s (cyps), was also investigated. The expressions of cyp6t1 and cyp28d2 in FR were higher than that in FS by 1.9- and 2.1-fold, respectively. After 1- or 24-h formothion treatment, the cyp expression patterns in both FR and FS were varied which they might be induced, repressed or no effects. In conclusion, the results of this study suggest that the overexpression of up-stream regulatory gene, BdcncC, may be involved in the control of metabolic resistance of insecticides in B. dorsalis.
害蟲抗藥性已為世界性重要議題,而抗藥性產生主要可透過兩種機制:標的作用不敏感及提升解毒代謝作用。後者主要是藉由提升解毒酵素之表現,而使異生物質(xenobiotics)可在體內代謝以降低其毒性及排出體外。解毒酵素基因的表現與否,涉及其上游調控區是否受轉錄因子結合而活化;本研究乃針對其中一重要轉錄調控因子cap and collar C(簡稱cncC)進行基因表現的探討。首先,東方果實蠅(Bactrocera dorsalis (Hendel))cncC基因已透過Next Generation Sequencing (NGS)部分序列以PCR選殖出,命名為BdcncC (accession number: KJ957012),其全長為3493 bp,衍生之蛋白質具1123胺基酸,內含ETGE motif及bZIP區位(basic luecine zipper domain)。其次,福木松(formothion)抗性蟲體之BdcncC表現量較福木松感性蟲體高出4.5倍;以福木松處理1小時後,即可見感性和抗性蟲體之BdcncC表現量皆會明顯地上升,不過感性蟲體上升幅度較抗性高出2.9倍。再者,福木松抗性蟲體下游解毒酵素,細胞色素P450之cyp6t1及cyp28d2表現較感性蟲體分別高出1.9與2.1倍;而以福木松處理感性和抗性蟲體1及24小時後,各細胞色素P450基因之表現互有上升、下降或持平等變化。總結本研究結果顯示,解毒酵素與其上游轉錄調控因子於感性和抗性蟲體有明顯的表現差異,此差異可能也是造成抗藥性的原因之一。
URI: http://hdl.handle.net/11455/89097
其他識別: U0005-2811201416180092
文章公開時間: 2017-08-31
顯示於類別:昆蟲學系

文件中的檔案:
檔案 描述 大小格式 
nchu-103-7101036018-1.pdf1.71 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。