Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89109
標題: Demographic Analysis of Effect of Host Plants, Sex Ratio and Male Attractant on the Population Traits of Bactrocera dorsalis (Hendel) Based on Two-sex Life Table Theory
以兩性生命表分析寄主植物、性比及雄性誘引劑對東方果實蠅族群特性之影響
作者: 黃毓斌
Yu-Bing Huang
關鍵字: Bactrocera dorsalis
host plant
sex ratio
methyl eugenol
population trait
東方果實蠅
寄主植物
性比
甲基丁香油
族群特性
引用: CHAPTER 1 Reference Cited Agriculture and Food Agency. 2013. Agricultural Statistics Yearbook. Agriculture and Food Agency, Council of Agriculture, Executive Yuan, Taiwan. Bateman, M. A. 1972. The ecology of fruit flies. Annual Review of Entomology, 17: 493-518. Birch, L. C. 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology, 17: 15-26. CABI and EPPO. 1997. Quarantine Pests for Europe. CAB International and European and Mediterranean Plant Protection Organization, New York, USA. Carey, J. R. 2001. Insect biodemography. Annual Review of Entomology, 46: 79-110. Carey, J. R., Yang, P. J. and Foote, D. 1988. Demographic analysis of insect reproductive levels, patterns and heterogeneity: case study of laboratory strains of three Hawaiian tephritids. Entomologia Experimentalis et Applicata, 46: 85-91. Chi, H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17: 26-34. Chi, H. 1990. Timing of control based on the stage structure of pest populations: a simulation approach. Journal of Economic Entomology, 83: 1143-1150. Chi, H. 2013. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http: // 140.120.197.173 /Ecology /Download / Twosex- MSChart .zip. Chi, H. 2006. TIMING-MSChart: a computer program for the population projection based on age-stage, two-sex life table. http://140.120.197.173/Ecology/ Download / Timing-MSChart.zip. Chi, H. and Liu, H. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica, 24: 225-240. Chi, H. and Su, H. Y. 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 35: 10-21. Dannon, E. A., Tamo, M. A., van Huis, A. and Dicke, M. 2010. Functional response and life history parameters of Apanteles taragamae, a larval parasitoid of Maruca vitrata. BioControl, 55: 363–378. Efron, B. and Tibshirani, R. J. 1993. An Introduction to the Bootstrap. Chapman & Hall, New York, NY. Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford, United Kingdom. Ellers-Kirk, C. and Fleischer, S. J. 2006. Development and life table of Acalymma vittatum (Coleoptera: Chrysomelidae), a vector of Erwinia tracheiphila in cucurbits. Environmental Entomology, 35: 875-880. Foote, D. and Carey, J. R. 1987. Comparative demography of laboratory and a wild strain of the oriental fruit fly, Dacus dorsalis. Entomologia Experimentalis et Applicata, 44, 263-268. Gabre, R. M., Adham, F. K. and Chi, H. 2005. Life table of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae). Acta Oecology, 27: 179-183. Goodman, D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. The American Naturalist, 119: 803-823. Guo, J. Y., Cong, L., Zhou, Z. S. and Wan, F. H. 2012. Multi-generation life tables of Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae) under high-temperature stress. Environmental Entomology, 41: 1672-1679. Haye, T., Mason, P.G., Dosdall, L.M. and Kuhlmann, U. 2010. Mortality factors affecting the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham), in its area of origin: A life table analysis. Biological Control, 54: 331–341. Huang, Y. B. and Chi, H. 2012a. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Science, 19: 803-823. Huang, Y. B. and Chi, H. 2012b. Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: a case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Journal of Agriculture and Forestry, 61, 37-45. Huang, Y. B. and Chi, H. 2013. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife technique. Journal of Applied Entomology, 137: 327-339. Kasap, İ. and Şekeroğlu, E. 2004. Life history of Euseius scutalis feeding on citrus red mite Panonychus citri at various temperatures. BioControl, 49: 645-654. Latham, D. R. and Mills, N. J. (2010) Life history characteristics of Aphidius transcaspicus, a parasitoid of mealy aphids (Hyalopterus species). Biological Control, 54: 147-152. Legaspi, J. C., Mannion, C., Amalin, D. and Legaspi Jr, B. C. 2011. Life Table Analysis and Development of Singhiella simplex (Hemiptera: Aleyrodidae) Under Different Constant Temperatures. Annals of the Entomological Society of America, 104: 451-458. Leslie, P. H. 1945. On the use of matrices in certain population mathematics. Biometrika, 33: 183-212. Lewis, E. G. 1942. On the generation and growth of a population. Sankhya, 6: 93-96. Lewontin, R. C. 1965. Selection for colonizing ability. The Genteic of Colonizing Species (eds, H.G. Baker & G.L. Stebbins.) pp.77-94. Academic Press, San Diego, CA. Liu, T. X. and Stansly, P. A. 1998. Life history of Bemisia argentifolii (Homoptera: Aleyrodidae) on Hibiscus rosa-sinensis (Malvaceae). The Florida Entomologist, 81: 437-445. Lysyk, T. J. 2001. Relationships between temperature and life history parameters of Muscidifurax raptorellus (Hymenoptera: Pteromalidae). Environmental Entomology, 30: 982-992. Milbrath, L. R. and Biazzo, J. 2012. Development and reproduction of the foxglove aphid (Hemiptera: Aphididae) on invasive swallow-worts (Vincetoxicum spp.). Environmental Entomology, 41: 665-668. Muştu, M. and Kılıncer, N. 2013. Life table and some feeding features of Nephus kreissli fed on Planococcus ficus. Phytoparasitica 41:203–211. Nunez-Campero, S. R., Aluja, M., Rull, J. and Ovruski, S. M. 2014. Comparative demography of three neotropical larval-prepupal parasitoid species associated with Anastrepha fraterculus (Diptera: Tephritidae). Biological Control, 69: 8-17. Tanaka, N., Steiner, L. F., Ohinata, K. and Okamoti, R. 1969. Low-cost larval rearing medium for mass production of oriental and Mediterranean fruit flies. Journal of Economic Entomology, 62: 967-968. Tuan, Shu-Jen, Chung-Chieh Lee and Hsin Chi. 2014a. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Management Science. 70: 805 -813. Tuan, Shu-Jen, Chung-Chieh Lee and Hsin Chi. 2014b. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Management Science. 70: 1936. Vargas, R. I. and Carey, J. R. 1990. Comparative survival and demographic statistics for wild oriental fruit fly, Mediterranean fruit fly, and melon fly (Diptera: Tephritidae) on papaya. Journal of Economic Entomology, 83: 1344-1349. Vargas, R. I, Stark, J. D. and Nishida, T. 1990. Population dynamics, habitat preference, and seasonal distribution patterns of oriental fruit fly and melon fly (Diptera: Tephritidae) in an agricultural area. Environmental Entomology, 19: 1820-1828. Vargas, R. I., Walsh, W. A., Kanehisa, D., Jang, E .B. and Armstrong, J.W. 1997. Demography of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Annals of the Entomological Society of America, 90: 162-168. Vargas, R. I., Walsh, W. A., Kanehisa, D., Stark, J. D. and Nishida, T. 2000. Comparative demography of three Hawaiian fruit flies (Diptera: Tephritidae) at alternating temperatures. Annals of the Entomological Society of America, 93: 75-81. CHAPTER 2 References cited Arakaki N, Kuba H, and Soemori H. 1984. Mating behavior of the oriental fruit fly, Dacus dorsalis Hendel (Diptera: Tephritidae). Applied Entomology and Zoology 19(1): 42-51. Alyokhin A. V, Messing R. H, and Duan J. J. 2001. Abundance and mating behavior of oriental fruit flies (Diptera: Tephritidae) near methyl eugenol-baited traps. Pan-Pacific Entomologist 77(3): 161-167. Bateman, M. A. 1972. The ecology of fruit flies. Annual of Review Enomology. 17: 493-518. Benelli G, Canale A, Bonsignori G, Ragni G, Stefanini C, and Raspi A. 2012. Male wing vibration in the mating behavior of the olive fruit fly Bactrocera oleae (rossi) (Diptera: Tephritidae). Journal of Insect Behavior. 25(6): 590-603. Chi H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology. 17: 26-34. Chi H. 1990. Timing of control based on the stage structure of pest populations: a simulation approach. Journal of Economic Entomology. 83: 1143-1150. Chi H. 1994. Periodic mass rearing and harvesting based on the theories of both age-specific life table and the age-stage, two-sex life table. Environmental Entomology. 23: 535-542. Chi H. 2014. TWOSEX-MSChart: a computer program for the age-stage, two-sex life tableanalysis. (http://140.120.197.173/Ecology/Download/Twosex-MSChart.zip). Chi H. 2014. TIMING-MSChart: a computer program for the population projection based on age-stage, two-sex life table. ( http://140.120.197.173/ Ecology/ Download / Timing-MSChart.zip ) Chi H. and Liu H 1985. Two new methods for the study of insect population ecology. Bulletin Institute of . Zoology Academia Sinica. 24: 225-240. Chi H., and Yang T. C. 2003. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology. 32: 327-333. Chi H., and Su H. Y. 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology. 35: 10-21. Dunnett C. W. 1980. Pairwise multiple comparison in the homogeneous variance, unequal sample size case. Journal of the American Statistical Association. 75: 789-795. Efron, B., and Tibshirani R. J. 1993. An introduction to the bootstrap. Chapman & Hall, New York, NY. Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford. Gabre, R. M., Adham, F. K. and Chi, H. 2005. Life table of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae). Acta Oecologica. 27: 179-183. Goodman D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. American Naturalist. 119: 803-823. Horng, S. B., and Plant R. E.. 1993. Lek mating system and its impact on male annihilation technique. Research Population Ecology. 35: 183-197. Huang, Y. B., and Chi H. 2011. The age-stage, two-sex life table with an offspring sex ratio dependent on female age. Journal of Agriculture and Forestry. 60(4): 337-345. Huang Y. B., and Chi H. 2012. Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: a case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Journal of Agriculture and Forestry. 61(1): 37-45. Huang Y. B., and Chi H. 2013. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife technique. Journal of Applied Entomology. (in press) Lewontin, R. C. 1965. Selection for colonizing ability. The Genteic of Colonizing Species (eds H. G. Baker and G. L. Stebbins.) pp.77-94. Academic Press, San Diego, CA. Meyer J. S., Ingersoll, C. G., McDonald, L. L., and Boyce, M. S. 1986. Estimating uncertainty in population growth rates: Jackknife vs Bootstrap techniques. Ecology. 67: 1156-1166. Steiner, L. F. 1952. Methyl eugenol as an attractant for oriental fruit fly. Journal of Economic Entomology. 63: 241-248. Tuan, Shu-Jen, Chung-Chieh Lee and Hsin Chi. 2014a. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Management Science. 70: 805 -813. Tuan, Shu-Jen, Chung-Chieh Lee and Hsin Chi. 2014b. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Management Science. 70: 1936. Vargas R. I, Walsh, W. A., Jang, E. B., Armstrong, J. W. and Kanehisa, D. T. 1996. Survival and development of immature stage of four of Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Annals of Entomological Society America. 89: 64-69. Vargas R. I., Walsh, W. A., Kanehisa, D., Jang, E. B., and Armstrong, J. W. 1997. Demography of four Hawaian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Annals of Entomological Society America. 90: 162-168. Vargas, R. I., Walsh, W. A., Kanehisa D., J. D. Stark, and Toshiyuki N. 2000. Comparative demography of three Hawaiian fruit flies (Diptera: Tephritidae) at alternating temperatures. Annals of Entomological Society America. 93(1): 75-81. White, I. M. and Elson-Harris M. M.. 1992. Fruit flies of economic significance: their identification and bionomics. CAB International in Association with the Australian Centre for International Agricultural Research, Canberra, Australia. pp 601. Yang, P. J., Carey, J. R. and Dowell, R. V. 1994. Temperature influences on the development and demography of Bactrocera dorsalis (Diptera: Tephritidae) in China. Environmental Entomology. 23(4): 971-974. CHAPTER 3 References cited Arakaki N, Kuba H. and Soemori. H. 1984. Mating behavior of the oriental fruit fly, Dacus dorsalis Hendel (Diptera: Tephritidae). Applied Entomology and Zoology 19: 42–51. Bateman, M. A. 1972. The ecology of fruit flies. Annual Review Entomology. 17: 493-518. Chi H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology. 17:26-34. Chi H. 1990. Timing of control based on the stage structure of pest populations: a simulation approach. Journal of Economic Entomology. 83:1143-1150. Chi H. 1994. Periodic mass rearing and harvesting based on the theories of both age-specific life table and the age-stage, two-sex life table. Environmental Entomology. 23:535-542. Chi H. 2005. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. (http://140.120.197.173/Ecology/Download/Twosex-MSChart.zip). Chi H. 2006. TIMING-MSChart: a computer program for the population projection based on age-stage, two-sex life table. (http://140.120.197.173/ Ecology/ Download / Timing-MSChart.zip) Chi H. and Liu H 1985. Two new methods for the study of insect population ecology. Bulletin Institute of Zoology Academia Sinica. 24:225-240. Chi H. and Yang T. C. 2003. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology 32:327-333. Chi H and Su H. Y. 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology. 35:10-21. Dunnett C. W. 1980. Pairwise multiple comparison in the homogeneous variance, unequal sample size case. Journal of the American Statistical Association. 75:789-795. Efron, B., and Tibshirani.R. J. 1993. An introduction to the bootstrap. Chapman and Hall, New York, NY. Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford. [Variorum edition, Bennett J. H. (Editor), 1999, Oxford University Press, Oxford]. Goodman D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. The American Naturalist. 119:803-823. Hee A. K. W. and Tan K. H .1998. Attraction of female and male Bactrocera papayae to conspecific males fed with ME and attraction of females to male sex pheromone components. Journal of Chemical Ecology 24: 753 – 764. Howlett, F. M. 1915. Chemical reactions of fruit flies. Bulletin of Entomological Research 6: 297–305. Huang, Y. B. and Chi H. 2011. The age-stage, two-sex life table with an offspring host plant dependent on female age. Journal of Agriculture and Forestry. 60(4): 337-345. Huang Y. B. and Chi H. 2012. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Science. 19: 803-823. Huang Y. B. and Chi H. 2012. Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: a case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Journal of Agriculture and Forestry. 61(1): 37-45. Huang Y. B., and Chi H. 2013. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife technique. Journal of Applied Entomology. 137(5): 327-339. Huang Y. B. and Chi H. 2015. Fitness of Bactrocera dorsalis (Hendel) on Seven Host Plants and an Artificial Diet. Turkish Journal of Entomology. (In press) Lewontin, R. C. 1965. Selection for colonizing ability. The Genteic of Colonizing Species (eds H. G. Baker and G. L. Stebbins.) pp.77-94. Academic Press, San Diego, CA. Meyer J. S., C. G. Ingersoll, L. L. McDonald, and Boyce M. S. 1986. Estimating uncertainty in population growth rates: Jackknife vs Bootstrap techniques. Ecology. 67:1156-1166. Metcalf, R. L. 1990. Chemical ecology of Dacinae fruit flies (Diptera: Tephritidae). Annals of the Entomological Society of America 83: 1017–1030. Metcalf, R. L., Metcalf, E.R. 1992. Plant Kairomones in Insect Ecology and Control. Chapman and Hall, New York. Nishida R, Shelly T. E and Kaneshiro K. Y. 1997. Acquisition of female-attracting fragrance from a Hawaiian lei flower, Fagraea berteriana, by males of the Oriental fruit fly. Journal of Chemical Ecology 23: 2275 – 2285. Nishida R, Tan K.H, Serit M, Lajis N. L, Sukari A. M. 1988. Accumulation of phenylpropanoids in the rectal glands of males of the oriental fruit fly, Dacus dorsalis. Experientia 44:534 – 536. Shelly, T. E. 1994a. Consumption of ME by male Bactrocera dorsalis (Diptera: Tephritidae): low incidence of repeat feeding. The Florida Entomologist. 77: 201–208. Shelly, T. E. and A. L.M. Dewire. 1994b. Chemical mediated mating success in male oriental fruit flies (Diptera: Tephritidae). Annals of Entomological Society of America. 87:375–382. Shelly, T. E. 2000. Flower-feeding affects mating performance in male oriental fruit fly, Bactrocera dorsalis. Ecological Entomology. 25: 109-114. Shelly, T. E., J. Edu, and McInnis D. 2010. Pre-release consumption of ME increases the mating competitiveness of sterile males of the oriental fruit fly, Bactrocera dorsalis, in large field enclosures. Journal of Insect Science. 10: 1–16. Tan K. H and Nishida R. 1996. Sex pheromone and mating competition after ME consumption in the Bactrocera dorsalis complex. Fruit Fly Pests: A World Assessment of Their Biology and Management (ed. by B. A. McPheron & G. J. Steck), pp. 147 –153. St. Lucie Press, Delray Beach, FL, USA. Tuan, Shu-Jen, Chung-Chieh Lee and Hsin Chi. 2014a. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Management Science. 70: 805 -813. Tuan, Shu-Jen, Chung-Chieh Lee and Hsin Chi. 2014b. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Management Science. 70: 1936. Vargas R. I, Walsh, W. A., Jang, E. B., Armstrong, and J. W. and Kanehisa, D. T. 1996. Survival and development of immature stage of seven of Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Annals of Entomological Society of America. 89: 64-69. Wee S. L and Tan K. H .2000. Sexual maturity and intraspecific mating success of two sibling species of the Bactrocera dorsalis complex. Entomologia Experimentalis et Applicata 94: 133-139. Wee S. L and Tan K. H. 2007. Temporal accumulation of phenylpropanoids in male fruit flies, Bactrocera dorsalis and B. carambolae (Diptera: Tephritidae) following ME consumption. Chemoecology 17: 81-85.
摘要: The oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the most destructive pests in the Asia and Pacific area and is an important quarantine pest for the United States and many countries. This fly attacks more than 150 cultivated and wild fruits in Taiwan. To build an ecological database, the life table of B. dorsalis reared on seven host plants and an artificial diet at 25 ± 1°C, 70 ± 10% R.H., and a photoperiod of 12:12 (L:D) h was studied. The life history raw data were analyzed using an age-stage, two-sex life table. The mean fecundity (F) ranged from 252.3 to 1300.3 eggs per female, and the highest fecundity was observed on pomelo; the net reproductive rate (R0) ranged from 100.9 to 588.3, and the highest reproductive rate was observed on jujube. The intrinsic rate of increase (r) was 0.1790, 0.1667, 0.1333, 0.1261, 0.1161, 0.1128, 0.1120, and 0.0797 d-1 on pitaya, artificial diet, guava, sweet orange, wax apple, pomelo, jujube, and wild-type mango in descending order, respectively. These studies were explained not only the high fitness of B. dorsalis as a pest in many areas but also the difficulty in managing this pest in past decades. For a two-sex population, the sex ratio plays an important role in population ecology and pest management. Male annihilation and sterile insect release are used as major strategies in fruit fly control. Therefore, the effect of the sex ratio must be understood for the quantitative planning of these methods. In this study, the life tables of the oriental fruit fly, at different adult sex ratios were collected. At the sex ratio 1♀:1♂, the adult pre-oviposition period (APOP, time duration from adult emergence to the first reproduction) and total pre-oviposition period (TPOP, time duration from birth to the first reproduction) was 11.0 d and 28.9 d, respectively. The females mated an average of 2.2 times during their lifespan. The net reproductive rate (R0), intrinsic increase rate (r), finite rate (λ), and mean generation time (T) were 555.0 offspring, 0.1689 d-1, 1.1840 d-1, 37.4 d, respectively. Both the APOP (7.7 d) and TPOP (25.2 d) were significantly shorter than those at the sex ratio 1♀:1♂, although the females laid an average of 1610.2 eggs. The population parameters R0, r, λ, and T were 31.6 offspring, 0.0727 d-1, 1.0754 d-1, and 47.5 d, respectively. At the female-biased sex ratio of 50♀:1♂ and no-choice mating, the APOP and TPOP were 44.4 d and 63.4 d, respectively. Males mated an average of 53.3 ± 12.2 times during their life time, but females mated only once. Females laid an average of 578.0 eggs. The values of R0, r, λ, and T were 566.6 offspring, 0.1199 d-1, 1.1274 d-1, and 52.9 d, respectively. The APOP and TPOP were 33.2 d and 52.3 d, respectively, at the female-biased sex ratio of 50♀:1♂ and free-choice mating. The females laid an average of 701.7 eggs. The values of R0, r, λ, and T were 687.9 offspring, 0.1326 d-1, 1.1417 d-1, and 49.3 d, respectively. Methyl eugenol (ME) is a powerful attractant for males of many tropical tephritid fruit flies. Since the 1980s, mixtures of ME and a variety of pesticides have been used in the control and monitoring of B. dorsalis in Taiwan. However, the effect of ME on the population parameters and population growth of B. dorsalis in Taiwan remains unclear. The life table raw data were analyzed by using the age-stage, two-sex life table to compare population parameters. The mean fecundity (F) ranged from 1082.9 to 1778.0 eggs, and the highest fecundity observed in ME-male cohort. The net reproductive rate (R0) ranged from 542.0 to 888.0 eggs, and the highest reproductive rate was observed in the same ME-male cohort. The intrinsic rate of increase was 0.1744, 0.1695, and 0.1616 d-1 on the male-fed-ME cohort, female-fed-ME cohort, and ME-deprived cohort, respectively. Results showed that females of the male-fed-ME cohort had the highest fecundity; however, no significant differences in the net reproductive rate and intrinsic rates. Because the oriental fruit flies are an ectothermic organisms, their development, survival, and reproduction are significantly affected by abiotic conditions. The studied indicated that life table is the most comprehensive and important basis of population ecology and pest management. Moreover, life tables are affected by host plants, sex ratio and other biotic factors, i.e., natural attractants. For an effective pest management program, we need to collect life tables of major pests on their main factors and under different environmental conditions. Population projection is also an important tool for detecting population growth trends, for describing stage structure, and for scheduling the pest management strategies.
東方果實蠅(Bactrocera dorsalis (Hendel)),是亞太地區最具嚴重危害性害蟲之一,亦是歐美等國家重要之檢疫有害生物。此蠅在台灣危害超過150種栽培或野生果樹。本研究為了要蒐集其生態特性資料庫,在25±1°C,70±10%RH,和12:12光週期(L:D)之條件下,以七種寄主植物及人工飼料飼養,蒐集其生活史資料,所得試驗數據利用兩性生命表分析其族群特性。試驗結果顯示其平均繁殖率(Fecundity)為每隻雌蟲252.3至1300.3卵,其中飼養在柚子上具最高繁殖率;然而就淨繁殖率(R0)來看,則介於100.9至588.3之間,飼養在印度棗上則具有最高淨生殖率。以內在增長率(r)而言,紅龍果、人工飼料、番石榴、甜橙、蓮霧、柚子、印度棗以及野生型芒果,其值大小依序為 0.1790、 0.1667、0.1333、 0.1261、0.1161、0.1128、0.1120及0.0797 d-1。這些研究資料解釋了在適宜的寄主環境下,東方果實蠅具有較高繁殖潛能,這也是過去幾十年來為何難有效防治之故。 對於具有兩性昆蟲種類中,性比率對於探討族群生態及蟲害管理具有相當重要角色。現行滅雄技術(male annihilation)及釋放昆蟲不孕性技術,已被廣泛應用於果實蠅防治工作中之主要策略,此技術當中,性比率大小可能會影響到防治工作中數量規劃,由此可見其重要性。本研究中就東方果實蠅在不同之雌雄比例下,收集兩性生命表資料。結果顯示在性比 1♀:1♂,成蟲產卵前期(APOP,從成蟲羽化至第一個產卵時期)和總產卵前期(TPOP,從出生到成蟲第一個產卵時期)為11.0和28.9天,雌蟲其一生交尾次數,平均約2.2次; 其淨繁殖率(R0),內在增長率(r),終極增長率(λ),平均世代時間(T)分別為555.0卵、0.1689 d-1,1.1840 d-1,37.4 d。在偏雄性別比1♀:50♂下,無論APOP(7.7 d)和TPOP(25.2 d)均較性比1♀:1♂顯著短;雖然雌蟲可產下平均繁殖量1610.2個卵,然其族群介量R0,r,λ及T分別為31.6 個、0.0727 d-1、1.0754 d-1及47.5 d。惟在偏雌性比例50♀:1♂且具無選擇交尾對象時,雄蟲在其一生當中可平均交尾 53.3±12.2次;其APOP和TPOP分別為44.4和63.4 d,雌蟲平均繁殖率為578.0個卵粒;其R0,r,λ及T之族群介量分別為566.6個,0.1199 d-1,1.1274 d-1及52.9 d。然於偏雌性性別比例50♀:1♂具自由選擇交配之處理時,其APOP和TPOP分別為33.2和52.3 d;雌蟲平均產卵量701.7個卵粒,其R0,r,λ及T 之族群介量分別為687.9個,0.1326 d-1,1.1417d-1及49.3 d。結果顯示在偏雌性比50♀:1♂,即使族群具有較低的內在增長率,然對淨生殖率則無顯著影響。相反地,偏雄性性比之內在增殖率則顯著降低。因此未來在規畫滅雄防治時,應列入考慮這些結果。 甲基丁香油對熱帶寡毛種類果實蠅雄蟲具有很強之誘引力,在1980年代台灣已開始利用此誘引物質添加藥劑,廣泛應用於誘殺及監測技術上。本研究係利用兩性生命表探討雌、雄成蟲分別取食甲基丁香油後對族群增長之影響。試驗結果顯示各處理之平均產卵量(F)介於 1082.9~ 1778.0個, 最高平均產卵量為僅雄蟲取食甲基丁香油之處理組最高。淨繁殖率(R0)則介於 542.0 ~ 888.0個,其中最高亦為僅雄蟲取食處理組。內在增值率male fed-ME、ME-deprived 及female fed-ME大小則分別為0.1744, 0.1695,及 0.1616 d-1 。由此可知male fed-ME處理組具有最高繁殖率、淨生殖率 及內在增值率之特性。 東方果蠅是變溫的生物體,故其發育 生存與繁殖能力受到非生物條件影響甚鉅。本研究強調生命表是族群生態學及蟲害管理上重要之基礎資料,利用生命表探討寄主植物、性比例及其他生物的因素如天然誘引劑,對果實蠅族群特性之影響。由兩性生命表分析得知,東方果實蠅完全適合生存於常見寄主水果種類,在適宜之寄主水果、高性比例及取食誘引物質,具有高產卵量及增值率之特性此特性也就是近幾年為何此果實蠅難於有效防治之原因。為建立有效蟲害管理模式,需要收集在不同環境條件下害蟲生命表,另利用生命表推估族群數量趨勢也是一個重要研究工具,對於在描述族群增長、族群結構及害蟲管理擬定原則上扮演相當重要之角色。
URI: http://hdl.handle.net/11455/89109
其他識別: U0005-0202201513370600
文章公開時間: 10000-01-01
Appears in Collections:昆蟲學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.