Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorMan-Miao Yangen_US
dc.contributor.authorChun-I Chiuen_US
dc.identifier.citationAbe, T. 1987. Evolution of life types in termites, pp. 125-148. In S. Kawano, J. H. Connell and T. Hidaka (eds.), Evolution and Coadaptation in Biotic Communities. University of Tokyo Press, Tokyo. Akibo-Betts, D. T., and S. A. Raymundo. 1978. Aphids as rice pests in Sierra Leone. International Rice Research Newsletter 3: 15-16. Araujo, R. L. 1970. Termites of the Neotropical region, pp. 527-576. In K. Krishna and F. M. Weesner (eds.), The Biology of Termites, vol. 2. Academic Press, New York. Behr, E. A., C. T. Behr, and L. F. Wilson. 1972. Influence of wood hardness on feeding by the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitadae). Annals of the Entomological Society of America 65: 457-460. Bonkowski, M., C. Villenave, and B. Griffiths. 2009. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant and Soil 321: 213-233. Bourguignon, T., J. Sobotnik, G. Lepoint, J. M. Martin, and Y. Roisin. 2009. Niche differentiation among neotropical soldierless soil-feeding termites revealed by stable isotope ratios. Soil Biology and Biochemistry 41: 2038-2043. Brauman, A. 2000. Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. European Journal of Soil Biology 36: 117-125. Brauman, A., D. Bignell, and I. Tayasu. 2000. Soil-feeding termites: Biology, microbial associations and digestive mechanisms, pp. 233-259. In T. Abe, D. E. Bignell and M. Higashi (eds.), Termites: Evolution, Sociality, Symbiosis, Ecology. Kluwer Academic Publishers, Dordrecht. Chahartaghi, M., R. Langel, S. Scheu, and L. Ruess. 2005. Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biology and Biochemistry 37: 1718-1725. Constantino, R. 1992. Abundance and diversity of termites (Insecta: Isoptera) in two sites of primary rain forest in Brazilian Amazonia. Biotropica 24: 420-430. Constantino, R. 1999. Chave ilustrada para identificacao dos generos de cupins (Insecta: Isoptera) que ocorrem no Brasil. Papeis avulsos de Zoologia 40: 387-448. Crosland, M. W. J., and J. P. E. C. Darlington. 1997. The relationship between the primary and a subsidiary nest of Pericapritermes nitobei (Isoptera, Termitidae, Termitinae) in Hong Kong. Sociobiology 29: 263-268. Cunha, H. F., and T. Y. S. Orlando. 2011. Functional composition of termite species in areas of abandoned pasture and in secondary succession of the parque estadual Altamiro de Moura Pacheco, Goias, Brazil. Bioscience Journal 27: 986-992. Curry, J. P., and O. Schmidt. 2007. The feeding ecology of earthworms – A review. Pedobiologia 50: 463-477. Darlington, J. P. E. C. 2012. Termites (Isoptera) as secondary occupants in mounds of Macrotermes michaelseni (Sjostedt) in Kenya. Insectes Sociaux 59: 159-165. Darlington, J. P. E. C., and R. D. Dransfield. 1987. Size relationships in nest populations and mound parameters in the termite Macrotermes michaelseni in Kenya. Insectes Sociaux 34: 165-180. Davies, R. G. 2002. Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia 133: 233-242. Davies, R. G., P. Eggleton, D. T. Jones, F. J. Gathorne-Hardy, and L. M. Hernandez. 2003. Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. Journal of Biogeography 30: 847-877. Donovan, S. E., P. Eggleton, and D. E. Bignell. 2001a. Gut content analysis and a new feeding group classification of termites. Ecological Entomology 26: 356-366. Donovan, S. E., P. Eggleton, W. E. Dubbin, M. Batchelder, and L. Dibog. 2001b. The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: Termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia 45: 1-11. Eggleton, P., and D. E. Bignell. 1997. Secondary occupation of epigeal termite (Isoptera) mounds by other termites in the Mbalmayo Forest Reserve, southern Cameroon, and its biological significance. Journal of African Zoology 111: 489-498. Eggleton, P., D. E. Bignell, S. Hauser, L. Dibog, L. Norgrove, and B. Madong. 2002. Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agriculture, Ecosystems & Environment 90: 189-202. Eggleton, P., D. E. Bignell, W. A. Sands, N. A. Mawdsley, Lawton, T. G. Wood, and N. C. Bignell. 1996. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 351: 51-68. Eggleton, P., R. R. Homathevi, D. T. Jones, J. A. MacDonald, D. Jeeva, D. E. Bignell, R. G. Davies, and M. Maryati. 1999. Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia. Philosophical Transactions of the Royal Society of London B Biological Sciences 354: 1791-1802. Elkins, N. Z., G. V. Sabol, T. J. Ward, and W. G. Whitford. 1986. The influence of subterranean termites on the hydrological characteristics of a Chihuahuan Desert ecosystem. Oecologia 68: 521-528. Emerson, A. E. 1938. Termite nests--A study of the phylogeny of behavior. Ecological Monographs 8: 247-284. Emerson, A. E. 1960. Six new genera of Termitinae from the Belgian Congo (Isoptera, Termitidae). American Museum Novitates 1988: 1-49. Evans, T. A., J. C. S. Lai, E. Toledano, L. McDowall, S. Rakotonarivo, and M. Lenz. 2005. Termites assess wood size by using vibration signals. Proceedings of the National Academy of Sciences of the United States of America 102: 3732-3737. Fox-Dobbs, K., D. F. Doak, A. K. Brody, and T. M. Palmer. 2010. Termites create spatial structure and govern ecosystem function by affecting N2 fixation in an East African savanna. Ecology 91: 1296-1307. Garnier-Sillam, E., and F. Toutain. 1995. Distribution of polysaccharides within the humic compounds of soils subjected to a humivorous termite Thoracotermes macrothorax Sjoestedt. Pedobiologia 39: 462-469. Gay, F. J., and J. H. Calaby. 1970. Termites of the Australian region, pp. 393-448. In K. Krishna and F. M. Weesner (eds.), The Biology of Termites, vol. 2. Academic Press, New York. Goldsbrough, C. L., D. F. Hochuli, and R. Shine. 2003. Invertebrate biodiversity under hot rocks: Habitat use by the fauna of sandstone outcrops in the Sydney region. Biological Conservation 109: 85-93. Hishi, T., F. Hyodo, S. Saitoh, and H. Takeda. 2007. The feeding habits of collembola along decomposition gradients using stable carbon and nitrogen isotope analyses. Soil Biology and Biochemistry 39: 1820-1823. Hsueh, W.-J. 1998. Development of castes in Capritermes, Sinocapritermes, and Nasutitermes in Taiwan. Master Thesis, National Taiwan University, Taipei, Taiwan. Inward, D. J. G., A. P. Vogler, and P. Eggleton. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution 44: 953-967. Jones, D. T. 2000. Termite assemblages in two distinct montane forest types at 1000 m elevation in the Maliau Basin, Sabah. Journal of Tropical Ecology 16: 271-286. Jones, D. T., and M. J. D. Brendell. 1998. The termite (Insecta: Isoptera) fauna of Pasoh Forest Reserve, Malaysia. Raffles Bulletin of Zoology 46: 79-92. Jones, D. T., and P. Eggleton. 2011. Global biogeography of termites: A compilation of sources, pp. 477-498. In D. E. Bignell, Y. Roisin and N. Lo (eds.), Biology of Termites: a Modern Synthesis. Springer, Heidelberg. Jones, D. T., R. H. J. Verkerk, and P. Eggleton. 2005. Methods for sampling termites, pp. 221-253. In S. Leather (ed.), Insect Sampling in Forest Ecosystems. Blackwell, Victoria, Australia. King, E. G., and W. T. Spink. 1969. Foraging galleries of the Formosan subterranean termite, Coptotermes formosanus, in Louisiana. Annals of the Entomological Society of America 62: 536-542. Kirton, L. G., and S. Cheng. 2007. Ring-barking and root debarking of dipterocarp saplings by termites in an enrichment planting site in Malaysia. Journal of Tropical Forest Science 19: 67-72. Korb, J. 2003. Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90: 212-219. Korb, J., and K. E. Linsenmair. 2001. The causes of spatial patterning of mounds of a fungus-cultivating termite: results from nearest-neighbour analysis and ecological studies. Oecologia 127: 324-333. Kovoor, J. 1967. Etude radiographique du transit intestinal chez un Termite superieur. Experientia 23: 820-821. Krishna, K. 1961. A generic revision and phylogenetic study of the family Kalotermitidae (Isoptera). Bulletin of the American Museum of Natural History 122: 303-408. Krishna, K., and F. M. Weesner. 1970. The Biology of Termites, vol. 2. Academic Press, New York. Krishna, K., D. A. Grimaldi, V. Krishna, and M. S. Engel. 2013. Treatise on the Isoptera of the world. Bulletin of the American Museum of Natural History 377: 1-2704. Lavelle, P., and A. V. Spain. 2001. Soil Ecology. Kluwer Academics Publishers, Dordrecht, Netherlands. Lee, C. C., K. B. Neoh, and C. Y. Lee. 2012. Caste composition and mound size of the subterranean termite Macrotermes gilvus (Isoptera: Termitidae: Macrotermitinae). Annals of the Entomological Society of America 105: 427-433. Lee, S. H., and N. Y. Su. 2009. The influence of branching tunnels on subterranean termites'' foraging efficiency: Considerations for simulations. Ecological Informatics 4: 152-155. Legendre, F., M. F. Whiting, C. Bordereau, E. M. Cancello, T. A. Evans, and P. Grandcolas. 2008. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Molecular Phylogenetics and Evolution 48: 615-627. Lenz, M., J. W. Creffield, T. A. Evans, B. Kard, C. Vongkaluang, Y. Sornnuwat, C. Y. Lee, T. Yoshimura, and K. Tsunoda. 2012. Resistance of polyamide and polyethylene cable sheathings to termites in Australia, Thailand, USA, Malaysia and Japan: A comparison of four field assessment methods. International Biodeterioration and Biodegradation 66: 53-62. Li, H. F., and N. Y. Su. 2008. Sand displacement during tunnel excavation by the Formosan subterranean termite (Isoptera : Rhinotermitidae). Annals of the Entomological Society of America 101: 456-462. Li, H. F., R. L. Yang, and N. Y. Su. 2010. Interspecific competition and territory defense mechanisms of Coptotermes formosanus and Coptotermes gestroi (Isoptera: Rhinotermitidae). Environmental Entomology 39: 1601-1607. Lys, J. A., and R. H. Leuthold. 1991. Morphology of the gallery system around the nest and gallery development under experimental conditions in the termite Macrotermes bellicosus (Smeathman). Insectes Sociaux 38: 63-76. Miller, L. R. 1984. Invasitermes, a new genus of soldierless termites from northern Australia (Isoptera: Termitidae). Australian Journal of Entomology 23: 33-37. Miura, T., and T. Matsumoto. 1998a. Foraging organization of the open-air processional lichenfeeding termite Hospitalitermes (Isoptera, Termitidae) in Borneo. Insectes Sociaux 45: 17-32. Miura, T., and T. Matsumoto. 1998b. Open-air litter foraging in the nasute termite Longipeditermes longipes (Isoptera: Termitidae). Journal of Insect Behavior 11: 179-189. Nash, M. H., and W. G. Whitford. 1995. Subterranean termites: Regulators of soil organic matter in the Chihuahuan Desert. Biology and Fertility of Soils 19: 15-18. Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter, pp. 961-1010. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston and M. E. Sumner (eds.), Methods of Soil Analysis: Part 3: Chemical methods. American Society of Agronomy and Soil Science Society of America, Madison. Nobel, P. S., P. M. Miller, and E. A. Graham. 1992. Influence of rocks on soil-temperature, soil-water potential, and rooting patterns for desert succulents. Oecologia 92: 90-96. Noirot, C. 1970. The nests of termites, pp. 73-125. In K. Krishna and F. M. Weesner (eds.), The Biology of Termites, vol. 2. Academic Press, New York. Noirot, C., and J. P. E. C. Darlington. 2000. Termite nests: architecture, regulation and defence, pp. 121-139. In T. Abe, D. E. Bignell and M. Higashi (eds.), Termites: Evolution, Sociality, Symbiosis, Ecology. Kluwer Academic Publishers, Dordrecht. Nutting, W. L. 1966. Colonizing flights and associated activities of termites. I. The desert damp-wood termite, Paraneotermes simplicicornis (Kalotermitidae). Psyche 73: 131-149. Paterson, E. 2003. Importance of rhizodeposition in the coupling of plant and microbial productivity. European Journal of Soil Science 54: 741-750. Paulian, R. 1970. The termites of Madagascar, pp. 281-295. In K. Krishna and F. M. Weesner (eds.), The Biology of Termites, vol. 2. Academic Press, New York. Perna, A., C. Jost, E. Couturier, S. Valverde, S. Douady, and G. Theraulaz. 2008. The structure of gallery networks in the nests of termite Cubitermes spp. revealed by X-ray tomography. Naturwissenschaften 95: 877-884. R Development Core Team 2013. R: A language and environment for statistical computing computer program, version 3.0.2. R Foundation for Statistical Computing, Vienna, Austria. Reinhard, J., H. Hertel, and M. Kaib. 1997. Systematic search for food in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). Insectes Sociaux 44: 147-158. Roisin, Y., and M. Leponce. 2004. Characterizing termite assemblages in fragmented forests: A test case in the Argentinian Chaco. Austral Ecology 29: 637-646. Roonwal, M. L. 1970. Termites of the Oriental region, pp. 315-391. In K. Krishna and F. M. Weesner (eds.), The Biology of Termites, vol. 2. Academic Press, New York. Sands, W. A. 1995. New genera and species of soil feeding termites (Isoptera: Termitidae) from African savannas. Journal of Natural History 29: 1483-1515. Scheffrahn, R. H., J. R. Mangold, and N. Y. Su. 1988. A survey of structure-infesting termites of peninsular Florida. Florida Entomologist 71: 615-630. Scheffrahn, R. H., J. Krecek, B. Maharajh, J. A. Chase, J. R. Mangold, J. Moreno, and H. Bayardo. 2005. Survey of the termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of Nicaragua. Florida Entomologist 88: 549-552. Schneider, K., S. Migge, R. A. Norton, S. Scheu, R. Langel, A. Reineking, and M. Maraun. 2004. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biology and Biochemistry 36: 1769-1774. Shellman-Reeve, J. S. 1997. The spectrum of eusociality in termites, pp. 52-93. In J. C. Choe and B. J. Crespi (eds.), The Evolution of Social Behavior in Insects and Arachnids. Cambridge University Press, Cambridge. Souza, O. F. F., and V. K. Brown. 1994. Effects of habitat fragmentation on Amazonian termite communities. Journal of Tropical Ecology 10: 197-206. Su, N. Y. 2005. Directional change in tunneling of subterranean termites (Isoptera: Rhinotermitidae) in response to decayed wood attractants. Journal of Economic Entomology 98: 471-475. Su, N. Y., and R. H. Scheffrahn. 1988. Foraging population and territory of the Formosan subterranean termite (Isoptera, Rhinotermitidae) in an urban environment. Sociobiology 14: 353-359. Su, N. Y., and H. Puche. 2003. Tunneling activity of subterranean termites (Isoptera: Rhinotermitidae) in sand with moisture gradients. Journal of Economic Entomology 96: 88-93. Su, N. Y., P. M. Ban, and R. H. Scheffrahn. 1993. Foraging populations and territories of the Eastern subterranean termite (Isoptera, Rhinotermitidae) in Southeastern Florida. Environmental Entomology 22: 1113-1117. Takahashi, R. 1922. Commensalism between aphids and termites. Zoological Magazine 34: 920-921. Tayasu, I., T. Abe, P. Eggleton, and D. E. Bignell. 1997. Nitrogen and carbon isotope ratios in termites: an indicator trophic habit along the gradient from wood-feeding to soil-feeding. Ecological Entomology 22: 343-351. Tayasu, I., T. Inoue, L. R. Miller, A. Sugimoto, S. Takeichi, and T. Abe. 1998. Confirmation of soil-feeding termites (Isoptera; Termitidae; Termitinae) in Australia using stable isotope ratios. Functional Ecology 12: 536-542. Thorne, B. L. 1980. Differences in nest architecture between the neotropical arboreal termites Nasutitermes corniger and Nasutitermes ephratae (Isoptera: Termitidae). Psyche 87: 235-243. Traniello, J. F. A., and R. H. Leuthold. 2000. Behavior and ecology of foraging in termites, pp. 141-168. In T. Abe, D. E. Bignell and M. Higashi (eds.), Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer Academic Publishers, Dordrecht. Tsai, C. C. 2003. A taxonomic study of termite (Isoptera) from Taiwan. Ph.D. Dissertation, Tunghai University, Taichung, Taiwan. Tschinkel, W. R. 2010. Methods for casting subterranean ant nests. Journal of Insect Science 10: 1-17. Tu, T. C. 1954. Ecological supplement to a Formosan termite, Capritermes (Capreitermes) nitobei (Shiraki). Journal of Formosan Medical Association 53: 225-235. Zech, W., W. Amelung, and H. Neufeldt. 1999. Organic matter in termite mounds of the Brazilian Cerrados, pp. 198-202. In R. J. Thomas and M. A. Ayarza (eds.), Sustainable Land Management for the Oxisols of the Latin American Savannas. CIAT publication.zh_TW
dc.description.abstractSoil-feeding termites is a highly diverse feeding group among Isoptera. They forage and feed organic matter in soil. Previous studies hypothesized that niche differentiation of soil-feeding termites are contributed by foraging different carbon sources. Life type classification of soil-feeding termites was thought to be separate type, but a few studies indicated that some species are one-piece or intermediate type. To find the foraging target and understand the life type, subterranean gallery systems of two only known soil-feeding termites of Taiwan, Pericapritermes nitobei (Shiraki) and Sinocapritermes mushae (Oshima et Maki), were excavated at five and seven locations, respectively, for studying the structures and functions, and for analyzing the soil property. In gallery systems, termites were found in the flat, narrow and irregular space beneath or surrounded with underground objects, such as wood pieces, stones, thick roots (primary and secondary tree roots), and fibrous roots (tertiary tree roots and grass roots). These termite harboring space in gallery system is called 'nodes' herein. In total, 90 nodes of P. nitobei and 64 nodes of S. mushae were observed. To investigate the function of nodes, termite caste composition and proportion of foraging workers were examined in each node. Forager proportion of P. nitobei was highest in nodes adjacent to fibrous roots, and it was never observed underneath wood. In contrast, the highest forager proportion of S. mushae was found in nodes adjacent to wood. Hence, soil around fibrous roots and woods were the potential food sources of P. nitobei and S. mushae, respectively. This result supports that two soil-feeding termites forage different carbon sources. Occurrence of larva, egg, and royal castes were correlated with occurrence of thick roots and stones in P. nitobei, so these two underground objects are possible nesting sites. Feeding and nesting sites of P. nitobei are significantly different on their spatial distributions, and it shows that this species is separate life type. In contrast, nesting sites of S. mushae were not distinguished by castes and spatial distribution. This result shows S. mushae is one-piece or intermediate life type. In summary, current study indicates that soil-feeding termites forage for specific carbon source, and one-piece or intermediate life type may occur in soil-feeding termites.en_US
dc.description.abstract食土白蟻 (soil-feeding termite) 以土壤中的有機質為食,為等翅目中物種多樣性最高的攝食群 (feeding group)。過去研究推測,不同物種的食土白蟻可能搜尋不同的碳源,因而造成攝食區位 (trophic niche) 之差異,此外對於其蟻巢之形式 (life type classification),許多研究將食土白蟻視為巢食分離型 (separate type),而部分學者認為亦有巢食共處型 (one-piece type) 或巢食連結型 (intermediate type) 的種類,但尚未被驗證。我以台灣現有的兩種食土白蟻,新渡戶歪白蟻 (Pericapritermes nitobei (Shiraki)),以及台華歪白蟻 (Sinocapritermes mushae (Oshima et Maki)) 為材料,探究其地下網絡系統之結構與功能,並進行巢區土壤成分分析,以釐清上述假說。共挖掘5個新渡戶歪白蟻及7個台華歪白蟻之地下網絡系統進行觀察與採集,記錄白蟻各階級所處位置,及其所具有的地下物件。同時首度以各樣區之採食工蟻 (forager) 的進食狀態,判斷白蟻在地下網絡系統中的取食位置。結果顯示,白蟻會停棲於地下網絡系統中非通道的空腔中,我將這些空腔定名為「節點 (node) 」,共記錄90個新渡戶歪白蟻的節點,以及64個台華歪白蟻的節點,這些節點通常出現在地下物件(石頭、木塊、粗根、鬚根)下方。新渡戶歪白蟻在具鬚根的節點有最高取食率,台華歪白蟻則是在具木塊的節點有最高取食率,由此推測新渡戶歪白蟻取食鬚根旁的土壤,而台華歪白蟻取食木塊旁的土壤,此結果顯示這兩種食土白蟻會搜尋不同的碳源。具有新渡戶歪白蟻之被撫育階級(蟻王、蟻后、幼蟲及卵)的節點出現率與粗根及石頭的出現率有顯著關聯,因此推測新渡戶歪白蟻會於粗根或石頭旁建立巢區 (nesting site)。由於新渡戶歪白蟻巢區及取食區 (feeding site) 的位置在空間分布上有顯著差異,故判定其為巢食分離型白蟻。台華歪白蟻之被撫育階級與物件的出現沒有關聯,無法辨識其巢區位置,且取食區的空間分布與其他類型的節點沒有顯著差異,故推測其為巢食共處型或巢食連結型的白蟻。本研究結果支持不同種的食土白蟻搜尋不同的碳源,造成攝食區位之差異,且部分食土白蟻可能具有巢食共處型或巢食連結型之生活型態。zh_TW
dc.description.tableofcontents摘 要..........i ABSTRACT..........iii TABLE OF CONTENTS..........v LIST OF LIST OF FIGURES..........vii INTRODUCTION..........1 BACKGROUND..........3 1. Foraging behavior and subterranean gallery system..........3 2. Feeding niche of soil-feeding termite..........4 3. Nest structure of termite..........5 4. Feeding and nesting site, and life type classification..........6 5. Soil-feeding termites in Taiwan..........7 MATERIALS AND METHODS..........9 1. Study sites and gallery systems..........9 2. Termite sampling..........10 3. Forager proportion..........11 4. Soil sampling and analysis of water and organic matter content..........11 5. Data analysis..........12 RESULTS..........15 1. Occurrence of underground object..........16 2. Occurrence of castes and plastered wall..........16 3. Forager proportion and vertical distribution..........17 4. Soil organic matter and water content..........18 DISCUSSION..........19 CONCLUSIONS..........25 REFERENCES..........26zh_TW
dc.subjectNest structureen_US
dc.subjectFunctional groupen_US
dc.subjectTrophic nicheen_US
dc.subjectSocial evolutionen_US
dc.titleStructures and functions of subterranean gallery systems of two soil-feeding termitesen_US
dc.typeThesis and Dissertationen_US
Appears in Collections:昆蟲學系


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.