Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89166
標題: 公共綠地之樹木生長土壤有效性之分析與研究
An Analysis of Effective Soils for Tree Growth in Public Green Spaces
作者: Kai-Hsin Lin
林楷昕
關鍵字: 根系
染劑
有效土壤
土壤孔隙
土壤硬度
root
dye
effective soil
soil porosity
cone index
引用: 一、 中文部分 公園綠地系統規劃設計參考手冊。99。中華民國景觀學會。內政部營建署。 王一雄、陳尊賢、李達源。1993。土壤汙染學。國立空中大學。 向為民。劉禎祺。2005。合理化施肥之土壤水分管理。彰化地區作物合理化施肥講習會論文集。彰化縣。 吳祖籠。1973。如何種植草皮。師友月刊。 (78), 37-37。 李慶端。1992。都市綠帶生育地之管理。水土保持學報。 24(2):71-79。 易希道編。1999。植物生理學。國立編譯館主編。正中書局。國立編譯館發行。 林佳燕、蔡義誌、林俐玲。2009。土壤粒徑分析實驗方法之比較。 Journal of Soil and Water Conservation, 41(2), 139-152。 林俐玲、陳信宏。2006。推估土壤水分特性之研究。 林俐玲、蘇煒哲、蔡義誌。2008。不同土地利用下土壤飽和水力傳導度與粗孔隙之探討。水土保持學報 40 (2):195 - 204。 林軍豪。2006。地表植生類型對土壤水分移動影響之研究。中興大學水土保持學系所學位論文。1-70。 徐玉標、吳銘塘。1968。土壤入滲率之測定。科學農業 16(1-2)﹕57-62。 徐秋華譯。1999。土的100個秘密。台北。日本林業技術協會編。 郭魁士。1974。土壤學。屏東。中國書局。 郭魁士。1997。土壤學。台北縣。中國書局。 黃俊騰。2007。土壤中優勢流動路徑的辨認與分析。碩士論文。台中:中興大學土壤環境科學研究所 楊喜田、董惠英、山寺喜成。2005。河南農業大學及信州大學。中國水土保持科學3(4):60-64。 萬鑫森。1968。土壤水分及其移動。水土保持學報第 01 卷第 1 期, p19-p25。 萬鑫森。1987。基礎土壤物理學。茂昌圖書有限公司。 萬鑫森譯。1987。基礎土壤物理學。國立編譯館主編。茂昌。圖書有限公司發行。 劉宛純。2011。大學校園樹木健康?安全度與棲地因子調查與研究-以逢甲大學為例。 劉東啟。2000。台南縣樹木植栽技術手冊。台南縣。台南縣政府。 謝文凱。2004。介面活性劑對油汙染土壤現地復育-生物通氣法之影響。雲林科技大學。環工研究所碩士論文。 二、 英文資料 Alaoui, A., & Diserens, E. 2011. Changes in soil structure following passage of a tracked heavy machine. Geoderma, 163(3), 283-290. Alaoui, A., & Goetz, B. 2008. Dye tracer and infiltration experiments to investigate macropore flow. Geoderma, 144(1), 279-286. Andres-Abellan, Manuela, et al.2005.Impacts of visitors on soil and vegetation of the recreational area'Nacimiento del Rio Mundo'(Castilla-La Mancha, Spain).'Environmental Monitoring and Assessment 101.1-3: 55-67. Arvidsson, J., H?kansson, I., 1991. A model for estimating crop yield losses caused by soil compaction. Soil Till. Res. 20, 319–332. Bengough, A.G. and Mullins, C.E., 1990. Mechanical impedance to root growth-A review of experimental techniques and root growth responses. J. Soil Sci., 41: 341-358. Boggie, R. 1974. Response of seedlings of Pinus contorta and Picea sitchensis to oxygen concentration in culture solution. New phytologist, 73(3), 467-473. Bronick, C. J., & Lal, R. 2005. Soil structure and management: a review.Geoderma, 124(1), 3-22. Brussaard, L. and Van Faassen, H.G., 1994. Effects of compaction on soil biota and soil biological processes. In: B.D. Soane and C. van Ouwerkerk (Editors), Soil Compaction in Crop Production. Developments in Agricultural Engineering 11. Elsevier, Amsterdam, pp. 215-235. Cheatle, R. J. 1991. Tree growth on a compacted oxisol. Soil & Tillage Research, 19, 331–344. Coutts, M. P., & Philipson, J. J. 1978. Tolerance of tree roots to waterlogging. New Phytologist, 80(1), 71-77. Da Silva, A.P., B.D. Kay, and E. Perfect. 1994. Characterization of the least limiting water range of soils. Soil Sci. Soc. Am. J. 58:1775-1781. Devitt, D. A., & Smith, S. D. 2002. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem. Journal of Arid Environments,50(1), 99-108. Dexter, A. R. 2004. Soil physical quality. Part I. Theory, effects of soil texture, ensity, and organic matter, and effects on root growth. Geoderma, 120, 201–214. Fernandez?Illescas, C. P., Porporato, A., Laio, F., & Rodriguez?Iturbe, I. 2001. The ecohydrological role of soil texture in a water?limited ecosystem. Water Resources Research, 37(12), 2863-2872. Fu, J. L., & Xiang, M. M. (2012). Research on Landscape and Ecological Restoration of Bare Soil in City Park. Applied Mechanics and Materials, 209, 426-429. Gee, G.W., and D. Or. 2002. Particle-size analysis. p. 255–293. In J.H. Dane and G. C. Topp (ed.) Methods of soil analysis. Part 4. SSSA Book Series No. 5. SSSA, Madison, WI. Gilman, E. F., Leone, I. A., & Flower, F. B. 1987. Effect of soil compaction and oxygen content on vertical and horizontal root distribution. Journal of Environmental Horticulture, 5(1), 33-36. Glidski, J. and Lipiec, J., 1990. Soil Physical Conditions and Plant Roots. CRC Press, Boca Raton, FL, 250 pp. Grable A.R. and E.G. Siemer. 1968. Effects of bulk density, aggregate size, and soil watersuction on oxygen diffusion, redox potential, and elongation of corn roots. Soil Sci. Soc. Am. Proc. 32:180-186. Grant, R. F. 1993. Simulation model of soil compaction and root growth. II. Model performance and validation. Plant&Soil, 150, 15–24. Grant, R.F., 1993a. Simulation model of soil compaction and root growth. I. Model structure. Plant Soil 150, 1–14. Guldner, O. 2002. Untersuchungen zu Bodenveranderungen durch die Holzernte in Sachsen und Entwicklung eines Konzepts zur okologisch vertraglichen Feinerschliessung von Waldbestanden. Tagungsbericht der Sektion Forsttechnik des Verbandes Deutscher Forstlicher Versuchsanstalten, Sopron, Ungarn, 10 p. H.de Kroon. E.J.W. Visse。2008。Root Ecology。Springer。 Hamblin, A.P. 1985. The inference of soil structure on water movement, crop root growth, and water uptake. Adv. Agron. 38:95-158. Hamza, M.A., Anderson,W.K., 2001. Effect of competition between gypsum, potassium, iron and sulphur on lupin. 2nd Australia- New Zealand Conference on Environmental Geotechnics. 28–30 November, 2001. Newcastle, Australia, pp. 95–97. Horn, R., Dom??a?, H., S?owi?ska-Jurkiewicz, A., & Van Ouwerkerk, C. 1995. Soil compaction processes and their effects on the structure of arable soils and the environment. Soil and Tillage Research, 35(1), 23-36. Influencing crop responses to compaction in Central and Eastern Europe. In: B.D. Soane and C. van Ouwerkerk (Editors), Soil Compaction in Crop Production. Elsevier, Amsterdam, pp. 365-390. J. (Eds.), Subsoil Compaction: Distribution, Processes andConsequences, Advances in GeoEcology, vol. 32. Catena Verlag, Reiskirchen, Germany, pp. 155–169. J.J.philipson and M. P. coutts.1977. The tolerance of tree roots to waterlogging III.oxygen transport in lodgepole pine and sitka spruce roots of primary structure. New Phytol. (1978) 80,341-349. Jakobsen, B.F., Dexter, A.R., 1987. Effects of soil structure on wheat root growth, water uptake and grain yield. A computer simulation model. Soil Till. Res. 10, 331–345. Jakobsen, B.F., Dexter, A.R., 1988. Influence of biopores on root growth, water uptake and grain yield of wheat (Triticum aestivum) based on predictions from a computer model. Biol. Fert. Soils 6, 315–321. James C. Frisby and Donald L. Pfost.1993.Soil Compaction: The Silent Thief. Department of Agricultural Engineering. Kozlowski, T. T. 1999. Soil compaction and growth of woody plants. Scandinavian Journal of Forest Research, 14, 596–619. Lal, R., 1991. Soil structure and sustainability. J. Sustain. Agric. 1,67– 92. Lipiec, J., & H?kansson, I. 2000. Influences of degree of compactness and matric water tension on some important plant growth factors. Soil and Tillage Research,53(2), 87-94. Lipiec, J., & Hatano, R. 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma, 116(1), 107-136. Lipiec, J., Arvidsson, J., & Murer, E. 2003. Review of modelling crop growth, movement of water and chemicals in relation to topsoil and subsoil compaction. Soil and tillage Research, 73(1), 15-29. Lipiec, J., HSkansson, I., Tarkiewicz, S. and Kossowski, J., 1991. Soil Physical properties and growth of spring barley related to the degree of compactness of two soils. Soil Tillage Res., 19: 307-317. Lipiec, J., Ku?, J., S?owi?ska-Jurkiewicz, A., & Nosalewicz, A. 2006. Soil porosity and water infiltration as influenced by tillage methods. Soil and Tillage research,89(2), 210-220. M. P. coutts.1981. The tolerance of tree roots to waterlogging V.growth of woody roots of sitka spruce and lodgepole pine in waterlogged soil. New Phytol. (1982) 90, 467-76. Marshall, T. J.1988.soil physics. Cambridge : Cambridge University Press . Martinez-Meza, E., & Whitford, W. G. 1996. Stemflow, throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs. Journal of Arid Environments, 32(3), 271-287. Mitteilung Nr. 32. Institute for Land Water Management Research, Petzenkirchen (in German, with English summary). Morrow, R. and R. Allsop. 2010. Earth User's Guide to Permaculture. Kangaroo Press. ?hrstr?m, P., Persson, M., Albergel, J., Zante, P., Nasri, S., Berndtsson, R., & Olsson, J. 2002. Field-scale variation of preferential flow as indicated from dye coverage. Journal of Hydrology, 257(1), 164-173. O'Sullivan, M. F., & Simota, C.1995. Modelling the environmental impacts of soil compaction: a review. Soil and Tillage Research, 35(1), 69-84. Pan, E., & Bassuk, N. 1985. Effects of Soil Type and Compaction on the Growth of Ailanthus altissima Seedlings1. growth, 2(4), 13. Pardo, A., Amato, M., Chiaranda, F.Q., 2000. Relationships between soil structure, root distribution and water uptake of chickpea (Cicer arietinum L.). Plant growth and water distribution. Eur. J. Agron. 13, 39– 45. Passioura, J. B. 2002. Soil conditions and plant growth. Plant, Cell & Environment, 25(2), 311-318. Rampazzo, N., Blum, W.E.H., Wimmer, B., 1998. Assessment of soil structure parameters and functions in agricultural soils. Bodenkultur 49, 69– 84. Rojas, K.W., Ahuja, L.R., 1999. Management practices. In: Ahuja, L.R., Rojas, K.W., Hanson, J.D., Shaffer, M.J. (Eds.), Root Zone Water Quality Model, Modelling Management effects on Water Quality and Crop Production. Water Resources Publications, LCC, Highlands Ranch, CO, pp. 245–280. Rojas, K.W., Hanson, J.D., Shaffer, M.J. (Eds.), Root Zone Water Quality Model, Modelling Management effects on Water Quality and Crop Production. Water Resources Publications, LCC, Highlands Ranch, CO, pp. 245–280. Simota, C., Lipiec, J., Dumitru, E., Tarkiewicz, S., 2000.SIBIL—a simulation model for soil water dynamics and crop yield formation considering soil compaction effects. I. Modeldescription. In: Horn, R., Van den Akker, J.J.H., Arvidsson, J. (Eds.), Subsoil Compaction: Distribution, Processes andConsequences, Advances in GeoEcology, vol. 32. Catena Verlag, Reiskirchen, Germany, pp. 155–169. Simota, C., Canarache, A., 1988. Effects of induced compaction in soil water balance and crop yields estimated with a deterministic simulation model. In: Proceedings of the XI ISTRO Conference, Edinburgh, pp. 391–396. Sands, R. & Bowen, G.D. 1978. Compaction of sandy soils in Radiata pine forests. II. Effects of compaction on root configuration and growth of radiata pine seedlings. Aust J For Res 8:163-170. Simota, C., Canarache, A., 1988. Effects of induced compaction in soil water balance and crop yields estimated with a deterministic simulation model. In: Proceedings of the XI ISTRO Conference, Edinburgh, pp. 391–396. Simota, C., Lipiec, J., Dumitru, E., Tarkiewicz, S., 2000.SIBIL—a simulation model for soil water dynamics and crop yield formation considering soil compaction effects. I. Modeldescription. In: Horn, R., Van den Akker, J.J.H., Arvidsson, J. (Eds.), Subsoil Compaction: Distribution, Processes andConsequences, Advances in GeoEcology, vol. 32. Catena Verlag, Reiskirchen, Germany, pp. 155–169. size, and soil watersuction on oxygen diffusion, redox potential, and Soane, B. D., & Van Ouwerkerk, C. 1995. Implications of soil compaction in crop production for the quality of the environment. Soil and Tillage Research, 35(1), 5-22. Startsev, A. D., & McNabb, D. H. 2009. Effects of compaction on aeration and morphology of boreal forest soils in Alberta, Canada. Canadian Journal of Soil Science, 89, 45–56. Stein, A., Droogers, P., & Booltink, H. 1998. Point processes and random sets for analyzing patterns of methylene blue coloured soil. Soil and Tillage Research,46(3), 273-288. Stenitzer, E., 1988. SIMWASER—A Numerical Model for Simulation of Soil Moisture Regimes and of Crop Yields, Mitteilung Nr. 32. Institute for Land Water Management Research, Petzenkirchen (in German, with English summary). T. T. Kozlowski. Soil moisture and absorption of water by tree root's. 1987.Journal of Arboriculture 13 (2): February . T.T. Kozlowskia. 2008. SoilCompaction and Growth of WoodyPlants. Scandinavian Journal of Forest Research. USDA-ARS, 1992. Root zone water quality model, version 1.0. Technical Documentation. GSPR Technical Report No. 2. Great Plains Systems Research Unit. Utset, A., & Cid, G. 2001. Soil penetrometer resistance spatial variability in a variability in a Ferralsol at several soil moisture conditions. Soil Till Res. Whiting D., A. Card, C. Wilson, J. Reeder, Ph.D.. 2011. Colorado Master Gardenersm Program. Colorado State University. Whiting, D., Card, A., Wilson, C. Moravec, C., Reeder, J.. Managing Soil Tilth, Texture, Structure and Pore Space. Colorado Master Gardner Program 2011, Colorado State University Extension. CMG GardenNotes #213. Yang, J. L., & Zhang, G. L. 2011. Water infiltration in urban soils and its effects on the quantity and quality of runoff. Journal of Soils and Sediments, 11(5), 751-761. Zobel, R. W. 2008. Hardware and software efficacy in assessment of fine root diameter distributions. Computers and electronics in agriculture, 60(2), 178-189. 三、 日文 王裕文.。2000。草坪草之生態, 分佈與利用。中華民國雜草學會會刊 21.(1): 1-16。 矢野亮。桑原香?美。2012。自然教育園異常?生。第 7 報。自然教育園報告, (43), 65-75。 有賀一郎。2007。特集 「?豊街都市?化技術課題」(II)。日本?化工??誌, 33(2), 339-341。 ?住 ?。1987。樹木根系圖說。誠文堂新光社。 四、 網路資料 國立自然科學博物館。最後檢索:2014/07/01 Available at: http://web2.nmns.edu.tw/Archive/nmns_2012/ch/visit/map/aerial_view.html 台中公園。最後檢索:2014/07/01 Available at: www.phjh.tc.edu.tw/~contest/簡報製作/93/708.ppt. 國立中興大學。最後檢索:2014/07/01 Available at: http://recruit.nchu.edu.tw/grade-exam/TrafficToNCHU.htm 教育部數位教學資源入口。最後檢索:2014/04/20 Available at: http://content.edu.tw/senior/geo/ks_ks/book1/soil/wha/m1.htm Forest Service, U.S. Department of Agriculture.林務局.美國農業. 最後檢索:2014/05/19 Available at: http://na.fs.fed.us/spfo/pubs/misc/tree_care/aib372.htm#contents 農委會農業試驗所嘉義分所。最後檢索:2014/06/20 Available at: http://www.caes.gov.tw/newknow/vesicular-1.htm 土壤?度測量計圖片來源。最後檢索:2014/06/20 Available at: Cornell university http://nrcca.cals.cornell.edu/soil/CA4/CA0435.php Creating an Earth Plaster Recipe From Your Soil. 最後檢索:2014/02/19 Available at: http://www.strawbale.com/earth-plaster-recipe/ 水在孔隙中的運動圖片來源Introduction to Basic Ground-Water Flow。最後檢索:2014/02/19 Available at: http://www.earthdrx.org/influentandeffluentstreams.html Soil Types and Testing. 最後檢索:2014/03/18 Available at: http://www.rain.org/global-garden/soil-types-and-testing.htm Three Easy Soil Tests. 最後檢索:2014/03/18 Available at: http://cultivatorscorner.com/what-is-soil-made-of
摘要: Tree root could absorb water and store nutrients, it is the important function to maintain the growth of tree. And the growth of root is closely related with the soil conditions because soil could provide water, nutrients, air and other essential substances, while provide space for root to grow. This thesis calls the soil that allow tree root grow better is 'effective soil.' Management of trees in public space is important to maintain environmental quality and public safety. Invalid soil could cause the negative growth of root, and let the growth potential decline, thus increasing the possibility of falling. Therefore, to management of trees, the effectiveness of the soil in public green space is an important issue. In this experiment, we use food coloring Brilliant Blue FCF to detect effective soil of public space. After pouring dye, we dug and observe distribution of dye between soil poles and how did roots grow in potholes. Used Yamanaka's soil hardness tester to detect the soil hardness then analyzed soil texture. We could clearly observe the flow path of dye between soil pores by using this dye. So we think that this method is a quickly and convenient way to detect effective soil. The experiment hold in three places, National Chung Hsing University, Taichung park and National Museum of Natural Science, and respectively test six points in each place. After experimenting, we found that average depth in National Chung Hsing University of six points is 13 cm; the average depth in Taichung park is16 cms ; and the average depth in National Museum of Natural Science is 21 cm. To summarize experiments observation and data, cone index will make the soil density becomes higher because of outside exerting pressure, thus hardly to permeate. Regardless of what soil texture, it is hard to bring water to the bottom of soil if there is no continuity soil porosity. When the surface of soil pore is because of smaller space and it is hard to penetrate by gravity, it will diffuse by capillary water. Moreover, we discovered the deeper, the hard of soil. Speculated that soil public sites because early construction, mechanical rolling deep soil, resulting in increased hardness of deep soil.
樹木的根系具有吸收水分、儲存養分等功能,是維持樹木生長的重要機能,又根系的生長與土壤的條件息息相關,土壤可以提供水分、養分及空氣等重要物質,同時亦提供根系生長的空間,能夠促使樹勢發育更良好的土壤稱為「有效土壤」。 管理公共空間的樹木是維護環境品質與公共安全的重要工作,無效土壤可能造成樹木根系生長不良,導致樹勢衰落,進而徒增樹木倒伏的可能性,因此公共綠地的土壤有效性是綠化管理的重要課題。 本試驗利用下列方法進行土壤有效性調查,使用染劑檢測公共空間之有效土壤,染色後挖坑,觀察到染劑水在土壤孔隙間的流動路徑,以中式硬度計檢測土壤斷坑後分析土壤質地以及根系於斷坑的生長情形,此試驗方法具可視性之檢驗有效土壤之方法。本試驗共於三處公共空間進行,分別為國立中興大學、台中公園、國立自然科學博物館,各試驗六個點位,染色試驗後發現中興大學的六個點位染色平均深度為13cm;台中公園的六個點位染色平均深度為16cm;國立自然科學博物館六個點位染色平均深度為21cm。 總結試驗觀察及數據得知,土壤硬度會因為外力的施壓而使得土壤密度變高,難以透水,不論土壤質地為何,土壤孔隙間沒有連續性孔隙將難以使水分帶到土壤底層,當土壤的表層孔隙因為空間變小而難以靠重力水向下時,將由毛細管水左右擴散。另外發現土壤的剖面,出現土壤越深,硬度越高的現象,推測公共地盤的土壤因為早期的施工,機械輾壓深層土壤,造成深處的土壤硬度增加。
URI: http://hdl.handle.net/11455/89166
其他識別: U0005-2811201416195148
文章公開時間: 10000-01-01
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.