Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89173
標題: 大蒜品種及生育期施用營養元素對蒜胺酸含量之影響
Influences of variety and mineral nutrient on alliin content in garlic (Allium sativum L.)
作者: Cheng-Hung Hsiao
蕭政弘
關鍵字: 大蒜
營養元素
園藝性狀
蒜胺酸
品種
garlic
mineral nutrient
horticultural characteristics
alliin
variety
引用: 王岩、李新霞、陳堅。2003a。薄層掃描法測定大蒜中蒜胺酸的含量。中國藥學雜誌 38(3): 217-218。 王偉萍、常軍民、陳堅。2003b。HPLC法測定蒜酶催化蒜胺酸生成大蒜辣素的配比及穩定性研究。新疆醫科大學學報 26(6): 534。 王小平、項蘇留。2006。微波消解一ICP—OES,AAS和AFS測定大蒜不同部位20種元素含量。光譜學與光譜分析 8(10): 1907-1911。 王海平、李錫香、沈鏑、宋江萍。2006a。大蒜種質資源研究進展。中國蔬菜 10: 15-18。 王傳、喬旭光、李福傳。2006b。高效液相色譜法測定大蒜中蒜胺酸含量。食品與發酵工業 32(4): 115-117。 孔靈君、徐坤、何平、王磊。2014。氮硫互作對大蔥氮、磷、鉀、硫吸收分配特性的影響。植物營養與肥料學報 20(1): 172-178。 成瑞喜、韋江群、劉景福。1997。磷水平與大蒜產量和品質的關係。中國蔬菜 (2): 6-8。 任德國、韓曉玉、李娟。2010。大蒜二次生長的原因及解决途徑。長江蔬菜 17: 45 -46。 李春圃。1987。蔥蒜類蔬菜栽培-大蒜。中國蔬菜栽培學。中國農科學院蔬菜研究所主編。農業出版社。北京。p.376-383。 李冰、王昌全、周瑾、李廷軒、張錫洲、陳遠學。2004。紫色土增施單質硫肥對大蒜生長發育和硫營養的影響。土壤通報35(5)608-611。 李燕、王榮、李冠、茍萍。2005。新鮮大蒜中蒜胺酸酶的分離純化及性質。植物學通報 22(5): 579-583。 周光華。1999。蔬菜優質高產栽培的栽培的理論基礎。山東科學出版社。p.420-423。 林學正、蕭吉雄、張有明。1983。大蒜。蔬菜作物種源庫指引(第1輯)。臺灣省農業試驗所編印。 林昭雄。1993。四十年來之臺灣大蒜產業。臺灣蔬菜產業演近四十年專輯。臺灣省農試所專刊30號。p.107-133。 林育全。1997。輻射線對大蒜儲藏品質之影響及大蒜素萃取技術與保存方法之研究。國立中興大學食品科學系碩士論文。臺中。 胡芳。2009。硫肥對新疆白蒜生長、品質及產量的影響。新疆農業大學碩士學位論文。烏魯木齊。 姜麗娜、詹長庚、符建榮。1997。鉀硫對大蒜頭優質高產的效應及相互關係初探。土壤肥料。p.28-31。 翁子桓。2010。大蒜酒製程及乙醇溶液中Alliin穩定性之研究。國立臺灣大學生物資源暨農學院食品科技研究所碩士論文。臺北。 陳功、王莉。2003。大蒜保鮮貯藏與深加工技術。中國輕工業出版社。北京。 陳孝君。2005。大蒜錠製品對中度高脂血者血清脂質與低密度脂蛋白氧化遲滯時間的影響。臺北醫學大學保健營養學研究所碩士論文。臺北。 陳倩娟、張民、劉玉柱、秦培軍。2009。蒜胺酸酶滅活方法研究。食品科技 34( 6): 228 - 231。 馬海樂、楊恒星、代春華。2005。高效毛細管電泳法測定大蒜中中蒜胺酸含量。食品科學 26(2): 189-192。 郭菊葉、蔣芳玲、吳震、曾旋睿、靳慧卿。2009。不同品種薹用大蒜花薹發育進程及其形態和解剖學觀察。上海農業學報 25(3): 42-46。 姬斌、李忠泰。1997。新疆四縣所產大蒜大蒜素含量之比較。新疆中醫藥 15(1): 35-36。 高德錚。1980。本土化蔬菜水耕栽培技術~動態浮耕式水耕系統之開發與利用。臺中區農業改良場特刊26號。 高述民、李鳳蘭、陸幗一、杜慧芳、越英。2003。中國大蒜(Allium sativum L.)18個品種的酯酶同工酶多態性分析。植物學通報20(6):723-729。 陸幗一。2000。大蒜高產栽培。金盾出版社。北京。 連橫。1920。蔬之屬-蒜。臺灣通史。農業志(卷27)。臺灣通史社發行。臺北。 袁耀佐、顧潔、杭太俊。2007。HPLC-MS/MS法研究精制蒜胺酸中有關物質。藥學學報 42(6): 639-642。 茍萍。2005。蒜胺酸酶的研究。生物學通報 39(8): 9-10。 梅四衛、朱涵珍。2009。大蒜研究進展。中國農學通報 25(8): 154-158。 許涵鈞、胡凱康、鄧汀欽、顏永福、曹幸之。2008。以ISSR 分子標誌探討大蒜品種之遺傳相關性。臺灣園藝 54(4): 265-273。 常軍民、陳堅、張麗靜。2003a。蒜胺酸在小鼠的藥代動力學研究。藥物分析雜誌23(4): 308-310。 常軍民、向陽、美麗萬、張麗靜。2003b。HPLC-MS 法測定小鼠血漿中蒜胺酸的濃度。新疆醫科大學學報 26(6): 532-536。 常軍民、張麗靜、美麗萬、楊新華、陳堅。2004a。HPLC測定不同產地蒜胺酸的含量。中成藥 26(12): 1025-1027。 常軍民、向陽、美麗萬。2004b。蒜胺酸在大鼠的藥代動力學研究。中成藥 26(3): 184-186。 張文君、劉兆輝、江麗華、陳清、鄭福麗、王梅、林海濤。2006。氮素對大蒜生長及養分吸收的影響。中國蔬菜研究論文 2: 20-23。 張本云。1994。大蒜、韭蔥及其野生近緣種。中國作物遺傳資源。中國農業出版社。p.751-759。 張英聚。1987。植物的硫營養。植物生理學通訊 (2): 9-15。 張翔、朱洪勛、張春河。1998。 大蒜氮磷鉀營養吸收規律與平衡施肥研究。土壤肥料 2:10-13。 張玳瑜。2008。30種大蒜的園藝性狀及含硫化合物質量分析。國立臺灣大學生物資源暨農學院園藝學研究所碩士論文。臺北。 景文娟、唐輝、芮鳴、崔利娜、陳軍崗。2007。優化鮮蒜中蒜胺酸提取工業。食品科技 6: 138-140。 華曉芳、黃雪松。2006。影響蒜胺酸美拉德反應速度的因素。食品科技 31(7): 156-158。 黃雪松、溫麗兒、宴日安。2005。反相高壓液相色譜法測定鮮蒜中的蒜胺酸。食品與發酵工業 31(5): 106-109。 黃佳興、王啟正、全中和。2010。以ISSR DNA標誌用於苦瓜遺傳變異及品種鑑定之研究。花蓮區農業改良場研究彙報 28: 21-34。 馮炘、葛豔輝、越俊英、閔笛、劉瞳、喬旭光。2008。蒜胺酸酶動力學性質研究。安徽農業科學 36(21): 8883-8884。 賈江濱、劉靜、譚亞非。1999。大蒜化學成分研究進展。廣東藥學 9(1): 1-5。 楊鳳娟、劉世琦、王秀峰。2004。不同品種及微肥對鱗莖中大蒜素含量的影響。山東農業科學 4: 22-24。 楊鳳娟、劉世琦、王秀峰。 2005a。土壤硼水平對大蒜生理生化及產量和品質的影響。中國農業科學 38(5): 1011-1016。 楊鳳娟、劉世琦、王秀峰、杜洪濤、臧金波。2005b。品種及栽培條件對大蒜鱗莖中大蒜素含量之影響。中國蔬菜 3: 11-13。 楊鳳娟、劉世琦、王秀峰、臧金波。2006。礦質營養和有機質對大蒜鱗莖鮮重及大蒜素含量的影響。山東農業大學學報 37(3): 405-408。 趙秀淓、楊藹華。2005。大蒜遺傳歧異性之研究。台南區農業改良場研究彙報 45: 26-38。 鄭海柔。1989。大蒜生長後期追施氮磷鉀複肥試驗。上海蔬菜3: 37-39。 鄭麗慧。2006。分析數種蔥屬蔬菜之大蒜素與檞皮黃酮含量及機能性食品開發之研究。大同大學生物工程學系所碩士論文。臺北。 臺灣省政府農林廳。1996。作物施肥手冊。行政院農業委員會及臺灣省政府農林廳編印。 樊治成、陸幗一、杜惠芳。1997。大蒜品種生態型的數量分類研究。植物生態學報 21: 169-174。 樊治成、郭虹芸、張曙東、王秀峰。2005。大蒜不同品種乾物質生產與氮、磷、鉀和硫的吸收特性。植物營養與肥料學報11(2): 248-253。 潘富俊。2007。福爾摩沙植物記:101種臺灣植物文化圖鑑&27則臺灣植物文化議題。遠流出版社。臺北。 劉佐、周藝敏、振振元、楊連志、李秋菊。2006。天津"宝坻三辣"增施硫肥效果試驗。天津農林科技 5: 10-12。 劉佳玲、邱震元。2014。探討不同粒徑SiO2-Allicin抗菌微粒之吸附量及抑菌效果。民生論叢 10(1): 1-12。 劉紅耀。2008。不同肥料配施對大蒜生長發育、品質與養分吸收的影響。華中農業大學碩士論文。武漢。 劉國芬。2000。大蒜栽培與貯藏。金盾出版社。北京。 劉中良、劉世琦、張自坤。2010。水培條件下硫對大蒜營養品質和鮮重的影響。中國農業通報。26(10):207-211。 蔣毓英、季騏光、楊芳聲。1685。蔬之屬-蒜。臺灣府志。物產物(卷17)。中華書局出版。北京。 蕭政弘。2004。大蒜促成栽培技術。臺中區農業改良場技術專刊第168號。行政院農業委員會臺中區農業改良場編印。 蕭素榮、李京東。2009。幾種植物提取物的生理特性及其應用。中國食物與營養 11: 21-23。 閻冰潔。2006。硫對大蒜產量和品質的影響。 山東農業大學論文。 顧智章。1991。韭菜、蔥、蒜栽培技術。金盾出版社。北京。 Abdullah, T. H., D. V. Kirkpatrick, and J. Carter. 1989. Enhancement of natural killer cell activity in AIDS with garlic. Dtsch. Z. Onkol. 21:52-53. Alexander, M. M. and G. A. Sulebele. 1973. Pectic substances in onion and garlic skins. J. Sci. Food Agr. 24(5):611-615. Al-Zahim, M., H. J. Newbury, and B.V. Ford-Lloyd. 1997. Classification of genetic variation in garlic (Allium sativum L.) revealed by RAPD. HortScience 32(6):1102-1104. Arzanloua, M. and S. Bohlooli. 2010. Introducing of green garlic plant as a new source of allicin. Food Chem. 120(1):179-183. Avato, P., V. Miccolis, and F. Tursi. 1998. Agronomic evaluation and essential oil content of garlic (Allium sativum L.) ecotypes grown in Southern Italy. Adv. Hort. Sci. 12:201-201. Baghalian, K., S. A. Ziai, M. R. Naghavi, H. N. Badi, and A. Khalighi. 2005. Evaluation of allicin content and botanical trials in Iranian garlic (Allium Sativum L.) ecotypes. Sci. Hort. 103:155-166. Bannai, S. and T. Ishii. 1982. Transport of cystine and cysteine and cell growth in cultured human diploid fibroblasts: effect of glutamate and homocysteate. J. Cell Physiol. 112(2):265-72. Block, E. 1985. Chemistry of garlic and onions. Sci. Am. 252:94-99. Block, E., S. Ahmad, J. Catalfamo, M. Jain, and R. Apitz-Castro. 1986. Antithrombotic organosulfur compounds from garlic: structural, mechanistic, and synthetic studies. J. Am. Chem. Soc. 108 (22):7045-7055. Block, E. 2005. Biological activity of Allium compound:recent results. Acta Hort. 688:41-57. Bloem, E., S. Haneklaus, and E. Schnug. 2005. Influence of nitrogen and sulfur fertilization on alliin content of onion and garlic. J. Agric. Food Chem. 27(10):1827-1839. Borde, M., M. Dudhane, and P. K. Jite. 2009. Role of bioinoculant (AM fungi) increasing in growth, flavor content and yield in Allium sativum L. under field condition. Not. Bot. Hort. Agrobot. Cluj. 37(2):124-127. Bordia, A., S. Verma, A. Vyas, B. Khabya, A. Rathore, N. Bhu, and H. Bedi. 1977. Effect of essential oil of onion and garlic on experimental atherosclerosis in rabbits. Atherosclerosis 3:379-386. Bradley, K. F., M. A. Rieger, and G. G. Collins. 1996. Classification of Australian garlic cultivars by DNA fingerprinting. Aust. J. Exp. Agr. 36(5):613-618. Bretting, P. K. and M. P. Widrlechner. 1995. Genetic markers and horticultural germplasm management. HortScience 30:1349-1352. Camargo, A., R. W. Masuelli, and J. L. Burba. 2005. Characterization of argentine garlic cultivars for their allicin content. Acta Hort. 688:309-312. Cantwell, M. 2000. Alliin in garlic. Perishables handling quarterly issue. 120:5-6. Cavallito, C. J., J. S. Buck, and C. M. Suter. 1944. Allicin, the antibacterial principle of Allium sativum. II. Determination of the chemical structure. J. Am. Chem. Soc. 66 (11):1952-1954. Chung, L. 2006. The antioxidant properties of garlic compounds: allyl cysteine, alliin, allicin, and allyl disulfide. J. Med. Food 9(2):205-213. Collin, H. A., J. Hughes, A. Tregova, R. Cosstick, L. Trueman, T. Crowther, L. Brown, and B. Thomas. 2005. Sulfur biochemistry of garlic: the biosynthesis of flavor precursors. Acta Hort. 688:165-172. Coolong, T. W. and W. M. Randle. 2003. Ammonium nitrate fertility levels influence flavour development in hydroponically grown 'Granex 33' onion. J. Sci. Food Agr. 83(5):477-482. Coolong, T. W. and W. M. Randle. 2003. Sulfur and nitrogen availability interact to affect the flavor biosynthetic pathway in onion. J. Amer. Soc. Hort. Sci. 128(5):776-783. De Candolle, A. 1986. Origin of cultivated plants.Reprint. New York:Hafner. Del Pozo, A., M. I. Gonzalez, and C. Barraza. 1997. Phenological development of 13 clones of garlic(Allium sativa): influence of temperature,photoperiod and cold storage. Acta Hort. 443:389-394. Diriba-Shiferaw, G., R. Nigussie-Dechassa, W. Kebede, T. Getachew, and J. J. Sharma. 2013. Growth and nutrients content and uptake of garlic (Allium sativum L.) as influenced by different types of fertilizers and soils. Sci. Technol. Arts Rests. J. 2(3):35-50. Edwards, S. J., D. Musker, and H. A. Collin. 1994. The analysis of S-alk(en)yl-L-cysteine sulphoxides (flavour precursors) from species of Allium by high performance liquid chromatography. Phytochem. Anal. 5:4-9. Ellen-Tattelman, M. D. 2005. Health effect of garlic. Am. Fam. Physician. 72:103-106. Engeland, R. L. 1991. Growing great garlic. Filarce production, Okanogan, Washington. Etho, T. and H. Ogura. 1978. Multivalent chromosomes in garlic, Allium sativum L. Memoirs of the Faculty of Agriculture, Kagoshima University. 14:53-59. Etho, T. 1986. Fertility of garlic clones collected in Soviet Central Asia. J. Soc. Hortic. Sci. 55:312-319. Farooqui, M. A., I. S. Naruka, S. S. Rathore, P. P. Singh, and R. P. S. Shaktawat. 2009. Effect of nitrogen and sulphur levels on growth and yield of garlic (Allium sativum L.) As. J. Food Ag-Ind. Special issue:18-23. Figliuolo, G., V. Candido, G. Logozzo, V. Miccoli, and P. L. Spagnoletti-Zeuli. 2001. Genetic evaluation of cultivated garlic germplasm (Allium sativum L. and A. ampeloprasum L.). Euphytica 121:325-334. Francois, L. E. 1991. Yield and quality responses of garlic and onion to excess boron. HortScience 26(5):547-549. Galoburda, R., K. Bodniece1, and T. Talou. 2013. Allium sativum flavor compounds as an indicator for garlic identity and quality determination. J. Food Sci. Eng. 3:226-234. Grégrová, A., H. Číźková, I. Bulantová, A. Rajchl, and M. Voldřich. 2013. Characteristics of garlic of the Czech origin. Czech J. Food Sci. 31(6):581-588. Godwin, I. D., E. A. B. Aitken, and L. W. Smith. 1997. Application of inter simple sequence repeat (ISSR) markers to genetics. Electrophoresis 18:1524-1528. Granroth, B. 1970. Biosynthesis and decomposition of crysteine derivatives in onion and other Allium species. Ann. Acad. Sci. Feen., Chem. p.71. Harunobu, A., B. L. Petesch, M. Hiromichi, K. Shigeo, and I. Itakura. 2001. Intake of garlic and its bioactive components. J. Nutr. 131:955-962. Hart, J. P. and P. Filner. 1969. Regulation of sulfate uptake by amino acids in cultured tobacco Cells. Plant Physiol. 44:1253-1259. Hell, R. 1997. Molecular physiology of plant sulfur metabolism. Plant 202(2):138-148. Horníčková, J., J. Velíšek, J. Ovesná, and H. Stavělíková. 2009. Distribution of s-alk(en)yl-l-cysteine sulfoxides in garlic (Allium sativum L.). Czech J. Food Sci. 27(special issue):232-235. Horníčková, J., R. Kubec, J. Velíšek, K. Cejpek, J. Ovesná, and H. Stavělíková. 2010. Profiles of S-alk(en)ylcysteinesulfoxides in various garlic genotypes. Czech J. Food Sci. 28:298-308. Horníčková, J., R. Kubec, J. Velíšek, K. Cejpek, J. Ovesná, and H. Stavělíková. 2011. Changes of S-alk(en)ylcysteine sulfoxide levels during the growth of different garlic morphotypes. Czech J. Food Sci. 29(4):373-381. Huchette, O., R. Kahane, J. Auger, I. Arnault, and C. Bellamy. 2005. Influence of environmental and genetic factors on the content of garlic bulbs. Acta Hort. 688:93-99. Hughes, J., A. Tregova, A. B. Tomsette, M. G. Jones, R. Cosstick, and H. A. Collin. 2005. Synthesis of the flavour precursor, alliin, in garlic tissue. Phytochemistry 66(2): 187-194. Hughes, J., A. Hamish, A. Collin, A. Tregova, A. B. Tomsett, R. Cosstick, and M. G. Jones. 2006. Effect of low storage temperature on some of the flavour precursors in garlic (Allium sativum). Plant Foods Hum. Nutr. 61(2):78-82. Iberl, B., G. Winkler, and K. Knobloch. 1990. Products of allicin transformation : ajoenes and dithiins, characterization and their determination by HPLC. Planta Med. 56:202-201. Ichikawa, M., I. Nagatoshi, and J. Yoshida. 2006. Determination of seven organosulfur compounds in garlic by high-performance liquid chromatography. J. Agric. Food Chem. 54(5):1535-1540. Irvine, G. and S. Sterling. 2002. Increasing the export potential–opportunities for Australian garlic. Rural industries research & development corporation. p.1-20. Jeong, H., S. H. Lee, H. S. Yun, and S. R. Choi. 2013. Changes in allicin contents of garlic via light irradiation. Korean J. Food Pres. 20(1):81-87. Janick, J. 1999. Exploitation of heterosis: uniformity and stability. The genetics and exploitation of heterosis in crops. p.319-333. Jo, M. H., I. K. Ham, K. T. Moe, S. W. Kwon, F. H. Lu, Y. J. Park, W. S. Kim, M. K. Won, T. I. Kim, and E. M. Lee. 2012. Classification of genetic variation in garlic (Allium sativum L.) using SSR markers. Aust. J. Crop. Sci. 6(4):625-631. Jones, M., J. Hughes, A. Tregova, J. Milne, A. Tomsett, and H. Collin. 2004. Biosynthesis of the flavour precursors of onion and garlic. J. Exp. Bot. 55(404): 1903-1918. Jones, M. G., H. A. Collin, A. Tregova, L. Trueman, L. Brown, R. Cosstick, J. Hughes, J. Milne, M. C. Wilkinson, A. B. Tomsett, and B. Thomas. 2007. The biochemical and physiological genesis of alliin in garlic. Med. Aromat. Plant Sci. Biotechnol. 1(1): 21-24. Jones, M. G., J. Hughes, A. Tregova, J. Milne, A. B. Tomsett, and H. A. Collin. 2004. Biosynthesis of the flavour precursors of onion and garlic. J. Exp. Bot. 55(404):1903-1917. Kamenetsky, R. 2007. Garlic: botany and horticulture. Hortic. Rev. 33:123-172. Keusgen, M. 1998. A high-throughput method for the quantitative determination of alliin. Planta Med. 64(8):736-740. Králová, J., J. Velíšek, J. Ovesná, and H. Stavělíková. 2006. Distribution of sulfur-containing amino acids in fifteen garlic varieties. Vegetable Crops Research Bulletin 65:117-125. Kruse, J., S. Kopriva, S. R. Hänsch, G. J. Krauss, R. R. Mendel, and H. Rennenberg. 2007. Interaction of sulfur and nitrogen nutrition in tobacco plants: significance of nitrogen source and root nitrate reductase. Plant Biol. 9(5):638-646. Kubec, R., M. Svobodova, and J. Velisek. 1999. Gas chromatographic determination of S-alk(en)yl-L-cysteine sulfoxides. J. Chromatogr. A. 862(1):85-94. Kuettner, E. B., R. Hilgenfeld, and M. Weiss. 2002. The active principle of garlic at atomic resolution. J. Biol. Chem. 277(48):46402-46407. Lallemand, J., C. M. Messian, F. Briand, and T. Etoh. 1997. Delimitation of varietal groups ingarlic (Allium sativum L.) by morphological, physiological and biochemical characters. Acta Hort. 433:123-132. Lau, B. H. S., F. Lam, and R. W. Cheng. 1987. Effect of an odor-modified garlic preparation on blood lipids. Nutr. Res. 7:139-149. Lawson, L. D. 1993. Bioactive organosulfur compounds of garlic and garlic products: Role in reducing blood lipids. In: Human medical agents from plants. American Chemical Society, Washington, DC. p.306-330. Lawson, L. D. 1996. The composition and chemistry of garlic cloves and processed garlic. In:Koch, H.P., Lawson, L.D. (Eds.). Garlic: The science and therapeutic application of Allium sativum L. and related species, seconded. Williams and Wilkins, Baltimore, U.S.A.. p.37-108. Lawson, L. D. and R. Bauer. 1998. Phyomedicines of Europe chemistry and biological activity: acs symposium series. American Chemical Society, Washington Dc. p.176-209. Leustek, T., M. N. Martin1, J. A. Bick, and P. J. Davies. 2000. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Biotech. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:141-65. Lilia, L., M. Lagunas, and F. Castaigne. 2008. Effect of temperature cycling on allinase activity in garlic. Food Chem. 111(1):56–60. Lopez, A., C. Rigoni, V. Silvestri, and J. Burba. 1997. Genetic variability estimation and correlations in white clonal type garlic (Allium sativum L.) characters. Acta Hort. 433:279-283. Makheja, A. and J. Bailey. 1990. Antiplatelet constituents of garlic and onion. Agent Actions. 3:360-363. Madhavi, D. L., T. N. Prabha, N. S. Singh, and M. V. Patwardhan. 1991. Biochemical studies with garlic (Allium Sativum) cell cultures showing different flavor levels. J. Sci. Food Agri. 56:15-24. Mathew, B. R. and K. Augusti. 1996. Hypolipidemic effect of garlic protein substituted for casein in diet of rats compared to those of garlic oil. Indian J. Exp. Biol. 34(4):337-340. McCallum, J., M. Pither-Joyce, M. Shaw, N. Porter, B. Searle, M. McManus, and M. J. Havey. 2005. Genomic and biochemical analysis of onion (Allium cepa L.) sulfur metabolism. Acta. Hort. 688:75-83. Meredith, T. J. 2008. The complete book of garlic –a guide for gardeners, growers, and serious cooks. Timber press. London. Miler, J. A. 2001. A historical perspective on garlic and cancer. J. Nutr. 131(3):1027-1031. Miron, T., I. Shin, and G. Feigenblat. 2002. Spectrophotometric assay for allicin and alliinase (alliinlyase) with a chromogenic thiol: reaction of 4-mercaptopyridine with thio-sulfinates. Anal. Biochem. 307(1):76-83. Mochizuki, E., A. Nakayama, Y. Saito, K. Nakazawa, H. S. Suzuki, and M. Fujita. 1988. Liquid chromatographic determination of alliin in garlic and garlic products. J. Chromatogr. A. 455:271-277. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15(3):473-497. Nasim, S. A., B. Dhir, R. Kapoor, S. Fatima, Mahmooduzzafar, and A. Mujib. 2010. Alliin production in various tissues and organs of Allium sativum grown under normal and sulphur-supplemented in vitro conditions. Plant Cell Tiss. Org. 101(1):59-63. Nock, L. P. and M. Mazelis. 1987. The C-S lyase of higher plants: Direct (Allium sativum) and onion (Allium cepa). Plant Physiol. 85:1079-1083. Noriya, M., N. S. Yaguchi, Y. Ono, T. Nakajima, S. Masuzaki, S. Imai, N. Yamauchi, and M. Shigyo. 2011. Characterization of amino acid and S-alk(en)yl-L-cysteine sulfoxide production in Japanese bunching onion carrying an extra hromosome of shallot. J. Jpn. Soc. Hortic. Sci. 80(3):322-333. Ohsumi, C., H. Takahisa, and K. Sano. 1993. Formation of alliin in the culture tissues of Allium sativum oxidation of S-allyl-l-cysteine. Phytochemistry 33(1):107-111. Paredes, M., V. Becerra, and M. I. González. 2008. Low genetic diversity among garlic (Allium sativum L.) accessions detected using random amplified polymorphic DNA (RAPD) Chil. J. Agr. Res. 68(1):3-12. Pooler, M. R. and P. W. Simon. 1993. Garlic flowering in response to clone, photoperiod, growth temperature,and cold storage. HortScience 28:1085-1086. Rabinowitch, H. D. and L. Currah. 2002. Allium –crop science:recent advances. CABI publishing, London, UK. Rahman, K. 2003. Garlic and aging: new insights into an old remedy. Ageing Res. Rev. 2(1):39-56. Randle, W. M., J. E. Lancaster, M. L. Shaw, K. H. Sutton, R. L. Hay, and M. L. Bussard. 1995. Quantifying onion flavor compounds responding tosulfur fertility-sulfur increases levels of lk(en)yl cysteine sulfoxides and biosynthetic intermediates. J. Am. Soc. Hortic. Sci. 120(6):1075-1081. Randle, W. M. 2000. Increasing nitrogen concentration in hydroponic solutions affects onion flavor and bulb quality. J. Am. Soc. Hortic. Sci. 125(2):254–259. Regel, E. 1985. Alliorum adhuc cognitorum monographia. Acta Horti Petropolitani 3:1-266. Rohlf, F. J. 2000. Ntsys-pc: Numerical taxonomy and multivariate analysis system. Version2.1. Exter Software. New York. p.83. Saito, K., K. Tatsuguchi, I. Murakoshi, and H. Hirano. 1993. cDNA cloning and expression of cysteine synthase B localized in chloroplast of Spinacia oleracea. Fed.Eur. Biochem. Soc. 324(3):247-252. Semagn, K., Å. Bjørnstad, and M.N. Ndjiondjop. 2006. An overview of molecular marker methods for plants. Afr. J. Biotechnol. 5:2540-2568. Siemonsma, J. S. and K. Piluek. 1994. Plant resources of south-east .prosea foundation. Bogar. Indonesia. Simon, P. W. 2002. The origins and distribution of garlic: how many garlics are there? The Garlic Press. 40:1-2. Singh, R. K. and S. N. Hiremath. 2013. Comparative study of alliin containing different varieties of garlics (Allium sativum L.). Int. J. Sci. and Res. Publications. 3(12):228-230. Stoll, A. and E. Seeback. 1947. Alliin, the pure mother substance of garlic oil. Experentia 3:114-115. Suzuki, T., M. Sugii, and T. Kakimoto. 1962. Gamma-L- glutamyl- S-allyl-L-cysteine, a new gamma-glutamyl peptide in garlic. Chem. Pharm. Bull. 10:345-346. Uchida, Y., T. Takahashi, and H. Danbara. 1976. Nutrient uptake by garlic. J. Sci. Soil Manure 7:1-5. Urano, Y., T. Manabe, M. Moji, and K. Saito. 2000. Molecular coling and functional characterization of cDNAs encoding cysteine synthase and serine acetyltransferase that may be responsible for high cellular cysteine content in Allium tuberosum. Gene 257(2):269-277. Van Damme, E. J., K. Smeets, S. Torrekens, F. Van Leuven, and W. J. Peumans. 1992. Isolation and characterization of alliinase cDNA clones from garlic (Allium sativum L.) and related species. Eur. J. Biochem. 209(2):751-757. Vinson, J., Y. Hao, X., Su, and L. Zubik. 1998. Phenol antioxidant quantity and quality in foods: vegetables. J. Agric. Food Chem. 46(9):3630-3634. Volk, G. M., A. D. Henk, and C. M. Richards. 2004. Genetic diversity among U.S. garlic clones as detected using AFLP methods. J. Amer. Soc. Hort. Sci. 129(4):559-569. Volk, G. M. and D. Stern. 2009. Phenotypic characteristics of ten garlic cultivars grown at different north American locations. HortScience 5:1238-1247. Wertheim, T. 1844. Protozoology. London: Bailliére, T indall & Cassel. Whitaker, J. R. 1976. Development of flavor, odor and pungency in onion and garlic. Adv. Food Res. 22:73-133. Yamazaki, M., M. Sugiyama, and K. Saito. 2002. Intercellular localization of cysteine synthase and alliinase in bundle sheaths of Allium plants. Plant Biotechnol. 19(1):7-10 Yu, T. H., C. M. Wu, and S. Y. Chen. 1989. Effects of pH adjustment and heat treatment on the stability and the formation of volatile compounds of garlic. J. Agric. Food Chem. 37:730-734.
摘要: Garlic (Allium sativum L.) is one of the most important flavoring and seasoning vegetables. Alliin is one of the primary sulfur-containing compounds of garlic, a sulfur-containing amino acid that is a precursor of allicin, which contributes to the special flavor of garlic. Allicin is considered to have health benefits and has been extensively studied. The main purpose of this study was to investigate the characteristics of the alliin content in garlic cloves, including comparison of its content among assorted varieties, the distribution in different parts of the plant at various stages of growth, and the influences of mineral elements in the nutrition solution. Water and 0.5% trifluoroacetic acid were used as solvents for the extraction of garlic alliin, and the former resulted in a higher extraction efficiency than the latter. Hot water and microwave methods were used to blanch the garlic, and the hot water method produced more consistent results than the microwave method. In the ́Great black leaf varietý, the amount of alliin was 14.4~18.3 mg×g-1 fresh weight (FW) and the coefficient of variation (CV) was 6.5~11.3% in the cloves. In the Argentina ́white garlić variety, the amount of alliin was 3.9~19.0 mg×g-1 FW and the CV was 6.6~12.7%. The alliin contents in cloves weighing between 1 and 4 grams were significantly higher. Analysis of the alliin contents in different parts of the plants of 3 varieties at different plant part growth stages demonstrated that the alliin contents in the roots remained low and stable, ranging from 0.4 to 1.2 mg×g-1 FW at all stages. The alliin contents differed slightly among the varieties. The alliin contents of white leaf sheaths and green leaf sheaths were higher at the early growth stage, at 1.2~2.5 mg×g-1 FW and 1.3~1.8 mg×g-1 FW, respectively, and lower at the middle growth stage, then increased again to 2.8~3.7 mg×g-1 FW and 1.5~1.8 mg×g-1 FW, respectively. The alliin contents of leaves and bulbs were increased significantly to 1.3~2.2 mg×g-1 FW and 3.4~4.6 mg×g-1 FW, respectively, at the late growth stage as compared with the early growth stage. According to the investigation of garlic shoot height are get maximum at 42 days and remain stable until 96 days after planting. Garlic achieved its maximum values on the 42 days, 42~56 days and 27~42 days after planting for shoot height, leaf length and leaf width, respectively. After that, the major development was increasing leaf number. This study investigated the relationships between alliin concentration, horticultural characteristics, and mineral element concentrations in assorted garlic varieties. The genetic diversity among these varieties was also analyzed using intersimple sequence repeat (ISSR) molecular markers, horticultural traits and mineral element assays. The results of the study can be used as references for variety selection and fertilizer application. The analyses demonstrated that the variances in clove number, pseudostem diameter, bulb weight and alliin concentration were significant among the varieties. The alliin concentrations of the 30 varieties examined ranged from 10.6 to 19.5 mg×g-1 FW, and most were between 10 and 15 mg×g-1 FW. Varieties collected from countries in Southeast Asia had significantly lower alliin concentrations than those from other countries, and the alliin concentration in bulbs of ́Great black leaf́ collected from different locations in Taiwan varied remarkably. Varieties with a higher alliin concentration had wider and longer leaves as well as a larger pseudostem diameter, but fewer cloves. These morphological traits could be used as indexes for the alliin level. The major element concentration in the collected plants was of a normal distribution. There was a highly positive correlation (r = 0.762*) between the alliin concentration and the sulfur concentration. However, highly positive correlations (r = 0.723*; r = 0.857**) were also observed between the sulfur concentration and the leaf length, as well as the number of days after planting, but a negative correlation with clove number was observed (r = -0.886**). The analysis results also showed that varieties with a high alliin level also contained significantly higher concentrations of nitrogen, sulfur, and zinc. Besides, the results of examination of genetic diversity using ISSR band, horticultural traits, and mineral element assays suggested that genotype does not exactly predict the phenotype. The alliin concentration could be affected by cross-reaction of genotype and phenotype and changed by cultivation. The effects of the mineral elements N, P, K, S, B, Zn and Cu on the content of alliin in the ́Great black leaf́ variety were studied. The experiment was conducted using sand culture, and during the scape elongation stage, different concentrations of mineral elements were applied and their effects evaluated. Mineral elements that affected the concentration of alliin were again tested in a field experiment. In the meantime, in vitro-cultured plantlets were employed to investigate the effects of sulfuric amino acids on the alliin content of leaves. The results indicated that Zn and Cu did not increase the alliin content, and overuse of Cu led to a greater number of cloves. Only at certain concentration ranges of B, the content of alliin was increased. Therefore, applying B, Zn and Cu is unlikely to be useful in field operation. In terms of macroelements, the application of S and N increased the alliin content. S was chosen for use in the field fertilization experiment. Two types of sulfuric fertilizer, potassium sulfate and magnesium sulfate, were employed in the field experiment. Both sulfuric fertilizers increased the alliin content and promoted the uptake of K. At a fertilization rate of 10 kg/0.1 ha, potassium sulfate significantly increased the alliin content and the weight of a single bulb. In contrast, magnesium sulfate increased the alliin content at 10 kg/0.1 ha, but the weight of a single bulb was not increased until the fertilization rate was increased to 30 kg/0.1 ha. Therefore, potassium sulfate should be used in consideration of yield and cost. In in vitro-cultured plantlets of garlic, by adding cysteine, cysteine or methionine in the fertilizer the alliin contents were all increased; however, the effect was less significant with cysteine.
大蒜為世界性重要之辛香類蔬菜,含硫胺基酸被認為是大蒜風味物質,蒜胺酸則是大蒜最主要之風味前驅物,其反應物大蒜素被認為對人體具有保健功效。本研究主要針對大蒜蒜胺酸含量,探討品種、植株型態及營養元素對蒜胺酸含量之影響。以水及0.5%三氟乙酸(trifluoroacetic acid)為溶劑萃取蒜胺酸,以水萃取顯著高於0.5%三氟乙酸。另以熱水及微波法殺菁,以熱水法殺菁處理間變異小。取́大片黑́及阿根廷́白蒜́,比較蒜球內蒜瓣間及不同重量蒜瓣蒜胺酸含量,́大片黑́蒜球內蒜瓣間蒜胺酸均量為14.4~18.3 mg×g-1 FW,蒜球內蒜瓣間蒜胺酸變異係數為6.5~11.3%。而阿根廷́白蒜́蒜胺酸均量為13.9~19.0 mg×g-1 FW,蒜球內蒜瓣間蒜胺酸變異係數為6.6~12.7%。蒜瓣1~4 g者蒜胺酸含量顯著較高。在不同大蒜品種不同生育期植體各部位蒜胺酸含量與植株生育調查,結果顯示根部蒜胺酸含量相當低,在生育初期為0.9~1.2 mg×g-1 FW,後期則為0.4~0.6 mg×g-1 FW。於白色假莖生育初期蒜胺酸含量為1.2~2.5 mg×g-1 FW,中期降低,後期再次升高為2.8~3.7 mg×g-1 FW。於綠色假莖生育初期蒜胺酸含量為1.3~1.8 mg×g-1 FW,中期降低後期再次升高為1.5~1.8 mg×g-1 FW。大蒜葉片生育初期蒜胺酸含量為0.9~1.1 mg×g-1 FW,中期則降低到後期再次升高為1.3~2.2 mg×g-1 FW。蒜球生育初期蒜胺酸含量為0.7~1.5 mg×g-1 FW,種植後98天後開始升高,至結球後期蒜胺酸含量3.4~4.6 mg×g-1 FW。大蒜地上部在生育種植42天後達最高標,最大葉長發生時間分別為42~56天,葉片寬度則在生育27~42天時達最大,後續生長主要是葉片數之增加。 為探討品種之園藝性狀與蒜胺酸含量之關係,將品種分群為高蒜胺酸與低蒜胺酸群,分析蒜胺酸與營養元素之關係,利用分子標誌技術、聚集與主成分分析確定分子遺傳及園藝性狀在蒜胺酸含量上扮演之角色。大蒜種質資源特性以瓣數、假莖徑及蒜球重,具有較高之差異性,30個品種蒜胺酸含量於10.6~19.5 mg×g-1 FW,多數大蒜蒜胺酸含量分布在10~15 mg×g-1 FW,品種間蒜胺酸含量存在差異性,尤其以東南亞各國所收集者顯著低於其他各國所收集者,臺灣各地所收集́大片黑́蒜球蒜胺酸含量亦存在顯著差異,蒜胺酸含量應為基因型與環境型交感反應之結果。高蒜胺酸品種則葉片較寬、葉長較長、假莖徑亦較粗,但蒜瓣數則較少,可作為蒜胺酸含量多寡之外在性狀特徵判斷。營養元素含量在蒜球品種中表現一致,其中硫含量與蒜球蒜胺酸含量(r = 0.762*)、葉片長度、生育日數皆呈顯著正相關(r = 0.723*、0.857**),但與蒜瓣數呈顯著負相關(r = -0.886**),於高蒜胺品種氮、硫、鋅含量顯著較高。在ISSR多型性條帶分析、園藝性狀及營養元素之主成分分析顯示,基因型不能完全等同於園藝性狀表現及元素含量,透過栽培方式改變蒜胺酸含量應為可行。 營養元素影響大蒜蒜胺酸含量,為探討氮、磷、鉀、硫、硼、鋅及銅對́大片黑́蒜胺酸含量之影響,以砂耕養液栽培方式,於花莖抽長期進行不同元素不同濃度施用,並將影響蒜胺酸含量之相關元素施用於田間,同時以組培苗為材料,評估含硫胺基酸促進組培苗葉片蒜胺酸含量之效果。鋅、銅、硼、磷及鉀並無法提高蒜胺酸含量之作用,且施用銅濃度增加蒜瓣數亦增加,硫及氮可顯著增加蒜胺酸含量。以硫酸鉀及硫酸鎂進行田間試驗,顯示此2種肥料每0.1 ha僅需施用10 kg,皆可提高蒜球蒜胺酸含量,並可同時促進鉀元素吸收,且單球重亦達顯著水平具較高產量;唯硫酸鎂則於30 kg時單球重方能達到最顯著。大蒜組培苗以不同胺基酸及不同濃度處理,皆以高濃度胱胺酸與甲硫胺酸,可提升蒜胺酸含量,半胱胺酸效果不顯著。
URI: http://hdl.handle.net/11455/89173
其他識別: U0005-1208201516334100
文章公開時間: 2015-08-25
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.