Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89176
標題: I. 評估葉綠素螢光作為荔枝對溫度逆境忍受性指標之研究 II. 茭白筍之最適貯藏溫度與溫度及光週期對菰黑穗菌菌絲生長之影響
I. Studies of Chlorophyll Fluorescence as an Indicator to Evaluate the Tolerance to Temperature Stress of Litchi (Litchi chinensis) II. The Optimum Temperature for Water Bamboo Storage and Effect of Temperature and Photoperiod on the Mycelium Growth of Ustilago esculenta P. Henn.
作者: Yi-Chun Tsai
蔡宜君
關鍵字: 荔枝
溫度逆境
葉綠素螢光
筊白筍
菰黑穗菌
Litchi chinensis
temperature stress
chlorophyll fluorescence
Zizania latifolia
Ustilago esculenta
引用: 第一部分、評估葉綠素螢光作為荔枝對溫度逆境忍受性指標之研究 王進學、葉德銘。2013。菊花之細胞膜熱穩定性檢測及其應用於篩選耐熱實生苗。 臺灣園藝 59(2):153-166。 江忠穎。2007。不同葉色甘藷的葉綠素螢光及葉片反射光譜特性。國立中興大學生命科學系碩士論文。台中。pp. 109。 行政院農業委員會農糧署。2012。荔枝。p. 95。102 年農業統計年報。行政院農業委員會農糧署。 行政院農業委員會農糧署。2012。荔枝。p. 187。臺灣地區主要農產品產銷及進出口量值101 年。行政院農業委員會農糧署。 任國三、程加祥、王紅對、趙傳麟、張峰、李修燕、徐傳銘。2007。茄子對低溫脅迫的生理響應及不同品種耐冷性比較。中國蔬菜27(4):12-15。 李志中、洪進雄。2010。以電解質滲漏率評估四種萵苣幼苗之耐熱性。植物種苗12(1):1-12. 李芸嫣。2012。葉綠素螢光作為評估番木瓜溫度逆境之指標。國立中興大學園藝學系碩士論文。台中。pp. 69。 李濡夙。2013。溫湯處理對北蕉生理斑點發生時生理變化的影響。國立中興大學園藝學系碩士論文。台中。pp. 74。 徐信次。1996。臺灣果樹彩色圖說(第二版)。臺灣省農業試驗所特刊第33號。台中。 高景輝。2005。植物生理分析技術。台北。 張哲瑋、程永雄、顏昌瑞、徐信次、趙政男、田永柔、何昭吉、林俊義。2005。 荔枝新品種台農1 號(翠玉)之育成。台灣農業研究54:43-53。 張哲瑋、鄧永興、顏昌瑞。2012。臺灣荔枝新品種介紹與佈局策略。臺灣荔枝產業佈局研討會專刊:25-38。 張哲瑋、顏昌瑞、王婉伶、劉茂南。2010。荔枝新品種'台農5 號(紅寶石)'之育成。台灣農業研究59(3):197-208。 張哲瑋、顏昌瑞、王婉伶、劉茂南、張仁育。2014。荔枝新品種「台農7 號(早大 荔)」之育成。台灣農業研究63(1):43-56。 張哲瑋、顏昌瑞、徐信次、王婉伶、蔡武雄、程永雄、何昭吉。2009。荔枝新品種台農3 號玫瑰紅之育成。台灣農業研究58(3):208-218。 鄧永興、張哲瑋、王怡玎。2005。荔枝。p. 39-52。黃美華等編著。台灣農家要覽增訂(三版)──農作二。行政院農業委員會。台北。 鄧永興、劉政道。2007。荔枝新品種台農4 號'吉荔'之育成。農業試驗所技術服務 72:4-7。 劉敏莉。2012。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報21(2):1-15。 顏昌瑞、 廖玉碗、田永柔。1984。台灣荔枝品種及其改良。中國園藝 30(4):10-222 近藤始彦、 盧虎生。2009。台湾の稲作における気象変動の影響と研究の現状。 農業および園芸 84: 36-41。 Abdul-Baki, A. A. and J. R. Stommel. 1995. Pollen viability and fruit-set of tomato genotypes under optimum-temperature and high temperature regimes. Hort. Sci. 30: 115-117. Abeles, F. B.. 1973. Ethylene in plant biology. Academic Press. New York. Ahn, Y. J., K. Claussen, and J. L. Zimmerman. 2004. Genotypic differences in the heat-shock response and thermotolerance in four potato cultivars. Plant Sci. 166(4): 901-911. Ali, M. B., E. J. Hahn, and K. Y. Paek. 2005. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol. Bioche. 43: 213-223. Allakhverdiv, S. I., V. D. Kreslavski, V. V. Klimov, D. A. Los, R. Carpentier, and P. Mohanty. 2008. Heat stress: an overview of molecular response in photosynthesis. Photosyn. Res. 98: 541-550. Allakhverdiv, S. I., Y. M. Feyziev, A. Ahmed, H. Hayashi, J. A. Aliev, V. V. Klimov, N. Murata, and R. Carprntier. 1996. Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. J. Photochem. Photobiol. Biol. 34: 149-157. Allen, D. J. and D. R. Ort. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6(1): 36-42. Allen, D. J., K. Ratner, Y. E. Giller, E. E. Gussakovsky, Y. Shahak, and D. R. Ort. 2000. An overnight chill induces a delayed inhibition of photosynthesis at midday in mango (Mangifera indica L.). J. Expt. Bot. 51(352): 1893-1902. Andaya, V. C. and D. J. Mackill. 2003. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J. Exp. Bot. 54: 2579-2585. Aro, E. M., I. Virgin, and B. Andersson. 1993. Photoinhibition of photosystemⅡ: inactivation, protein damage and turnover. Biochim. Biophys Acta 1143: 113-134. Arteca, R. N. and J. M. Arteca. 2007. Heavy-metal-induced ethylene production in Arabidopsis thaliana. J. Plant Physiol. 164(11): 1480-1488. Asada, K.. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601-639. Baker, N. R.. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59: 89-113. Baker, N. R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55: 1607-1621. Biggs, M., W. R. Woodson, and A. K. Handa. 1988. Biochemical basis of hightemperature inhibition of ethylene biosynthesis in ripening tomato fruits. Physiol. Plant. 72(3): 572-578. Blum, A. and A. Ebercon. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 21: 43-47. Board, J. E., M. L. Peterson, and E. Ng. 1980. Floret sterility in rice in a cool environment. Agron. J. 72: 483-487. Broetto, F., U. Luttge, and R. Ratajczak. 2002. Influence of light intensity and salttreatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum. Funct. Plant Biol. 29(1) 13-23. Bukhov, N. G. and R. Carpentier. 2000. Heterogeneity of photosystemⅡ reaction center as influenced by heat treatment of barely leaves. Physiol. Plant. 110: 279-285. Butker, W. L.. 1978. Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol. 29: 345-378. Carpentier, R.. 1999. Effect of high-temperature stress on the photosynthetic apparatus. pp. 337-348. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker Inc., New York. Campos, P. S., V. Quartin, J. C. Ramalho, and M. A. Nunes. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. Plant. J. Plant Physiol. 160: 283-292. Chaves, M. M., J. S. Pereira, J. Maroco, and M. L. Rodrigues. 2002. How plants cope with water stress in the field? Photosynthesis and growth. Ann. Bot. 89 (7): 907-916. Chaves, M. M., J. Flexas, and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103: 551-560. Chen, H. J., R. G. Quails, and G. C. Miller. 2002. Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ. Exp. Bot. 48: 119-128. Cheng, Y. C. and G. R. Fleming. 2009. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60: 241-262. Crafts-Brandner, S. J. and M. E. Salvucci. 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129: 1773-1780. Crafts-Brandner, S. J. and M. E. Salvucci. 2004. Analyzing the impact of high temperature and CO2 on net photosynthesis: biochemical mechanisms, models and genomics. Field Crops Research 90: 75-85. Dea, S., J. K. Brecht, M. C. N. Nunes, and E. A. Baldwin. 2010. Occurrence of chilling injury in fresh-cut 'Kent' mangoes. Postharvest Biol. Technol. 57: 61-71. Du, H. M., P. Zhou, B. G. Huang. 2013. Antioxidant enzymatic activities and gene expression associated with heat tolerance in a cool-season perennial grass species. Environ. Expt. Bot. 87: 159-166. Dubey, R. S.. 1997. Photosynthesis in plant under stressful condition. p. 859-875. In: M. Pessarakli (ed.) Handbook of photosynthesis. Marcel Dekker Inc. New York. Eaks, I. L.. 1960. Effect of chilling on the respiration of orange and lemon. Proc. Mer. Soc. Hort. Sci. 87: 181-185. Eaks, I. L.. 1980. Effect of chilling on the respiration and volatiles of California lemon fruit. J. Amer. Soc. Hort. Sci. 105: 865-869. Eaks, I. L. and L. L. Morris. 1956. Respiration of cucumber fruits associated with physiological injury at chilling temperatures. Plant Physiol. 31(4): 308-314. Eilers, P. H. C. and J. C. H. Peeters. 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42(3-4): 199-215. Foyer, C. H., M. Lelandais, and K. J. Kunert. 1994. Photooxidative stress in plants. Physiol. Plant. 92: 696-717. Georigieva, K.. 1999. Some mechanisms of damage and acclimation of the photosynthetic apparatus due to high temperature. Bulgaria J. Plant Physiol. 25: 89-99. Godwin, D. C., W. S. Meyer, and U. Singh. 1994. Simulation of the effect of chilling injury and nitrogen supply on floret fertility and yield in rice. Aust. J. Exp.Agri. 34: 921-926. Govindachary, S., N. G. Bukhov, D. Joly, and R. Carpertier. 2004. Photosystem II inhibition by moderate light under low temperature in intact leaves of chilling-sensitive and -tolerance plants. Physiol. Planta. 121: 322-333. Guo, Y. P., H. F. Zhoua, and L. C. Zhanga. 2006. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Scientia Hort. 108(3): 260-267. Hall, A. E.. 1992. Breeding for heat tolerance. Plant Breeding Rev. 10: 129-167. Hamber, R. M. and L. H. Fuchigami. 2000. Ethylene-induced stress resistance. pp. 81-89. In: H. L. Paul (ed.). Low temperature stress physiology in crop. CRC Press Inc., Florida. Hasselt, P. R.. 1974. Photo-oxidative damage in Cucumis leaves during chilling. Proc. K. Akad. Wet. Amst. (ser. C) 77: 50-56. Hernandez, A., J. Francisco, F. J. Corpas, G. M. Gomez, L. A. Del Rio, and F. Sevilla. 1993. Salt-induced oxidative stresses mediated by activated oxygen species in pea leaf mitochondria. Physiol. Plant. 89: 103-110. Hipkins, M. F. and N. R. Baker. 1986. Spectroscopy. p. 51-101. In: Hipkins M. F. and N. R. Baker (eds.). Photosynthesis, energy transduction. IRL Press, Oxford, United Kindom. Hopkins, W. G. and N. P. A. Huner. 2009. Introduction to plant physiology 4th ed. p. 96, 109-150, 228-229. New York: J. Wiley. Hsu, B. S.. 2007. On the possibility of using a chlorophyll fluorescence parameter as an indirect indicator for the growth of Phalaenopsis seedlings. Plant Sci. 172: 604-608. Huang, X., S. Subhadrabandhu, M. R. Ben-Arie, and R. Stern. 2005. Origin, history, production and processing. p.1-23. In: Litchi and longan botany, production and uses. C.M. Menzel and G.K. Waite (Eds.). CABI: Oxfordshire, UK. IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of working groups I and II of themintergovernmental panel on climate change. C. B. Field et al. (eds). Cambridge University Press. Cambridge and New York. 582 pp. IPCC. 2014. Climate change 2014: impacts, adaptation, and vulnerability. C. Field et al. (eds). Cambridge University Press. Cambridge and New York. 76 pp. Jones, J. G. and L. Hardy. 1989. Stress and cognitive functioning in sport. J. Sports Sci. 7: 41-63. Kaneda, C. and H. M. Beachell. 1974. Response of indica-japonica rice to low temperature. Sabrao J. 6: 17-32. Kiang, N. Y., J. Siefert, Govindjee, and R. E. Blankenship. 2007. Spectral signatures of photosynthesis. I. review of earth organisms. Astrobiol. 7(1): 222-251. Komayama, K., M. Khatoon, D. Takenaka, J. Horie, A. Yamashita, M. Yoshioka, Y. Nakayama, M. Yoshida, S. Ohira, N. Morita, M. Velitchkova, I. Enami, and Y. Tamamoto. 2007. Quality control photosystem II cleavage and aggregation of D1 protein in spinach thylakoids. Biochem. Acta 1767: 838-746. Kozai, N., K. Beppu, R. Mochioka, U. Boonprakob, S. Subhadrabandhu, and I. Kataoka. 2004. Adverse effects of high temperature on the development of reproductive organs in 'Hakuho' peach trees. J. Hortic. Sci. Biotech. 79: 533-537. Krause, G. H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313-349. Kreslavski, V., N. Tatarinzev, N. Shabnova, G. Semenova, and A. Kosobrukhov. 2008. Characterization of the nature of photosynthetic recovery of wheat seedlings from short-time dark heat exposures and analysis of the mode of acclimation to different light intensities. J. Plant Physiol. 165: 1592-1600. Kumakura, H. and Y. Shishido. 1994. The effect of daytime, nighttime, and mean diurnal temperature on the growth of Morioka-16 strawberry fruit and plants. J. Jap. Soc. Hort. Sci. 62: 827-832. Kurisu, G., H. Zhang, J. L. Smith, and W. A. Cramer. 2003. Structure of the cytochrome b6/f complex of oxygenic photosynthesis: tuning the cavity. Sci. 302: 1009-1014. Ledesma, N. A., M. Nakata, and N. Sugiyama. 2008. Effect of high temperature stress on the reproductive growth of strawberry cvs. 'Nyoho' and 'Toyonoka'. Sci. Hort. 130: 341.347. Lobell, D. B. and G. P. Asner. 2003. Climate and management contributions to recent trends in US agricultural yields. Sci. 299: 1032. Los, D. A. and N. Murata. 2004. Membrane fluidity and its roles in the perception of environmental signals. Biochem. Biophys. Acta. 1666: 142-157. Lukatkin, A. S.. 2003. Contribution of oxidative stress to the development of coldinduced damage to leaves of chilling-sensitive plant: 3.Injury of cell membranes by chilling temperatures. Russian J. Plant Physiol. 50: 243-246. Lukatkin, A. S., A. Brazaitytė, Č. Bobina, and P. Duchovskis. 2012. Chilling injury in chilling-sensitive plants: a review. Žemdirbystė=Agriculture 99(2): 111-124. Lweis, D. A. and L. L. Morris. 1956. Effect of chilling storage on respiration and deterioration of several sweet potato varieties. Pro. Amer. Soc. Sci. 68: 421-428. Lyons, J. M.. 1973. Chilling injury in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 24: 445-466. Marcum, K. B.. 1998. Cell membrane thermostability and whole-plant heat tolerance of Kentucky bluegrass. Crop Sci. 38: 1214-1218. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence──a practical guide. J. Exp. Bot. 345: 659-668. McCollum, T. G. and R. E. McDonald. 1991. Electrolyte leakage, respiration, and ethylene production as indices of chilling injury in grapefruit. HortScience 26(9): 1191-1192. McKee, J. and A. J. Richards. 1998. The effect of temperature on reproduction in five Primula species. Ann. Bot. 82: 359-374. McWilliam, J. R.. 1980. Summary and synthesis──adaptation to high temperature stress. pp. 444-446. In: N.C. Turner and P. J. Krammer (eds). Adaptation of plants to high temperature stress. John Wiley. New York. Meloni, D. A., M. A. Olivaa, C. A. Martineza, and J. Cambraiab. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Expt. Bot. 49(1): 69-76. Mittler, R.. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410. Molina-Bravo, R., C. Arellano, B. R. Sosinski, and G. E. Fernandez. 2011. A protocol to assess heat tolerance in a segregating population of raspberry using chlorophyll fluorescence. Scientia Hort. 130: 524-530. Morgan, P. W. and M. C. Drew. 1997. Ethylene and plant responses to stress. Physiol. Plant. 100: 620-630. Muhanty, P., B. Vani, and J. S. S. Prakash. 2002. Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Zeits. fur Naturf. Sec. C. Biosci. 57(9/10): 836-842. Nedbal, L., J. Soukupova, J. Whitmarsh, and M. Trtilek. 2000. Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality. Photosymthetica 38: 571-579. Ogaya, R., J. Penuelas, D. Asensio, and J. Llusia. 2011. Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change. Environ. Expt. Bot. 73: 89-93. Parkhill, J. P., G. Maillet, and J. J. Cullen. 2001. Fluorescence-based maximal quantum yield for PSⅡ as a diagnostic of nutrient stress. J. Phycol. 37: 517-529. Perks, M. P., B. A. Osborne, and D. T. Mitchell. 2004. Rapid predictions of cold tolerance in Douglas-fir seedlings using chlorophyll fluorescence after freezing. New Forests 28: 49-62. Promyoua S., S. Ketsa, and W. G. van Doorn. 2012. Salicylic acid alleviates chilling injury in anthurium (Anthurium andraeanum L.) flowers. Postharvest Biol. Technol. 64:104-110. Raines, C. A.. 2003. The Calvin cycle revisited. Photosyn. Res. 75: 1-10. Raison, J. K., J. M. Lyons, and W. W. Thompson. 1971. The influence of membranes on the temperature-induced changes in the kinetics of some respiratory enzymes of mitochondria . Arch. Biochem. Biophys. 142: 83-90. Rosenzweing, C. A., X. B. Iglesias, P. R. Yang, E. Epstein, and E. Chivian. 2001. Climate change and extreme weather events. Implications for food production, plant diseases and pest. Global Chang and Human Health 2: 90-104. Semenova, G. A.. 2004. Structural reorganization of thylakoid systems in response to heat treatment. Photosynthetica 42: 521-527. Shen, W., K. Nada, and S. Tachibana. 2000. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol. 124: 431-439. Smillie, R. M. and S. E. Hetherington. 1983. Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo. Plant Physiol. 72: 1043-1050. Smirnoff, N.. 1995. Antioxidant systems and plant response to the environment. In. N. Smirnoff (ed.) Environment and plant metabolisms: flexibility and acclimation. Bios Scientific Publ. UK. p. 217-243. Stern, R. A. and S. Gazit. 2003. The reproductive biology of the lychee. Hort. Rev. 28: 393-453. Straussa, A. J. and P. D. R. van Heerdena. 2011. Effects on both the roots and shoots of soybean during dark chilling determine the nature and extent of photosynthesis inhibition. Environ. Expt. Bot. 74: 261-271. Sudhir, P. and S.D.S. Murthy. 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42(4): 481-486. Taiz, L. and Zeiger, E. 2002. Plant physiology 3rd ed. p. 111-144. Sunderland: Sinauer. Taub, D. R, J. R. Seemann, and J. S. Coleman. 2000. Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant Cell Environ. 23: 649-656. Taylor, A. O. and A. S. Craig. 1971. Plants under climatic stress. II. Low temperature, high light effects on chloroplast ultrastructure. Plant Cell Physiol. 47: 719-725. Tezara, W., V. J. Mitchell, S. D. Driscoll, and D. W. Lawlor. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401: 914-917. Underhill, S. J. R., L. M. Coates, and Y. Saks. 1997. Litchi. p.191-208. In: Postharvest and storage of tropical and subtropical fruits. S.K. Mitra (ed.). CAB Intl. UK. Urban, L. and M. Jannoyer. 2004. Functioning and role of stomata in mango leaves. Acta Hort. 645: 441-446. Vani, B., P. P. Saradhi, and P. Mohanty. 2001. Characterization of high temperature induced stress impairments in thylakoids of rice seedlings. Indian J. Biochem. Biophys. 38: 220-229. Vega-Garcia, M. O., G. Lopez-Espinoza, J. C. Ontiveros, J. J. Caro-Corrales, F. D. Vargas, and J. A. Lopez-Valenzuela. 2010. Changes in protein expression associated with chilling injury in tomato fruit. J. Amer. Soc. Hort. Sci. 135: 83-89. Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad. 2007. Heat tolerance in plants: an overview. Env. Exp. Bot. 61: 199-223. Wang, C. Y. and D. O. Adams. 1982. Chilling-Induced ethylene production in cucumbers (Cucumis sativus L.). Plant Physiol. 69(2): 424-427. Wang, S. Y. and M. J. Camp. 2000. Temperature after bloom affect plant growth and fruit quality of strawberry. Sci. Hort. 85: 183-199. Wilson, R. A., M. K. Sangha, S. S. Banga, A. K. Atwal, and S. Gupta. 2014. Heat stress tolerance in relation to oxidative stress and antioxidants in Brassica juncea. J. Environ. Bio. 35: 383-387. Wise, R. R., J. McWilliam, and A. W. Naylor. 1983. A comparative study of lowtemperature- induced ultrastructural alterations of three species with differing chilling sensitivities. Plant Cell Environ. 6: 525-535. Wongsheree, T., S. Ketsa, and W. G. van Doorn. 2009. The relationship between chilling injury and membrane damage in lemon basil (Ocimum × citriodourum) leaves. Postharvest Biol. Technol. 51: 91-96. Wu, J., J. Lightner, N. Warwick, and J. Browse. 1997. Low temperature damage and subsequent recovery of fablmutant Arabidopsis exposed to 2℃. Plant Physiol. 113: 347-356. Wu, Z. B.. 2012. Increasing heat tolerance in pollen by modifying its carbohydrate metabolism. Carleton University Master of Science in Biology. Canada. Yamada, M., T. Hidaka, and H. Fukamachi. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Hort. 67: 39-48. 第二部分、茭白筍之最適貯藏溫度與溫度及光週期對菰黑穗菌菌絲生長之影響 王敬文。2002。採後竹筍老化生理研究。林業科學研究15(6):687-692。 行政院農業委員會農糧署。2012。筊白筍。p. 51。102 年農業統計年報。行政院農業委員會農糧署。 余永年。1962。筊白黑粉菌刺激生長物質的研究。植物學報4:339-350。 宋家瑋。1990。筊白筍採收後生理與氣調貯藏之研究。國立台灣大學園藝學系碩士論文。台北。 林天枝。1995。茭白筍產業之現況分析。臺灣蔬菜產業改進研討會專集。p. 215-226。 林天枝。2005。筊白筍。p. 271-276。方怡丹編著。台灣農家要覽增訂(三版)---農作二。行政院農業委員會。台北。 林幼君。2008。根圈細菌Bacillus cereus C1L 微膠囊製劑研發及真菌性病害防治研究。國立台灣大學生物資源暨農學院動物科學技術學系碩士論文。台北。 林鈺玲。1985。筊白筍莖膨大之生理探討。國立中興大學植物研究所碩士論文。台中。 官峰全。2012。氣變包裝與溫度對綠竹筍貯藏品質之影響。國立台灣大學園藝學系碩士論文。台北。 周濤、許時嬰。2006。MAP 對輕度加工筊白貯藏過程中生理變化的影響。食品科學27(10):564-567。 周濤、許時嬰、王璋、孫大文。2006。MAP 對輕度加工筊白品質的影響及其模型建立。食品科學27(3):235-238。 洪立、黃涵。1992。台灣蔬菜彩色圖說。國立臺灣大學園藝系。台北。 柯衛東、孔慶東、周國林。1996。菰黑粉菌不同菌株比較研究。長江蔬菜8:21-25。 席璵芳、羅自生、朱勇、杜彬俊、伍鵑偉。2001a。筊白保鮮技術的研究。中國果菜3:23。 席璵芳、羅自生、胡麒星。2001b。赤霉素對茭白採後生理的影響。江西農業大學 學報23(2):197-199。 陳正輝、嚴珮瑜、宋孟芬、黃晉興。2009。台灣筊白筍產業發展現況。農業試驗所技術服務80:26-28。 陳思穎。2008。貯藏溫度與包裝技術應用在茭白筍採後保鮮之研究。國立台灣大學生物資源暨農學院園藝學系碩士論文。台北。 黃晉興、安寶貞。2008。筊白筍產期調節與周年計畫生產。農業試驗所技術服務74:12-14。 郭得平、李曙軒、曹小芝。1991。筊白黑粉菌某些生物學特性的研究。浙江農業大學學報17(1):80-84。 程岩、沈崇堯、裘維蕃。1989。關於筊白黑粉菌的正名問題。真菌學報8(1):9-16。 彭德昌。2000。微生物接種對無子西瓜生育與產量之影響。花蓮區農業改良場研究彙報18:61-67。 程龍軍。2002。筊白孕筊期間生理生化變化的研究。浙江大學農業與生物技術學院碩士論文。中國。 楊秀珠。1976。筊白之貯藏、組織解剖及病原菌Ustilago esculenta P.Henn 之研究。國立中興大學植物病理學系碩士論文。 劉政道。1977。筊白外部型態及其花器構造之研究。中國園藝23(6): 281-289。 劉富文。1995。園產品採收後處理及貯藏技術。台灣省青果運銷合作社編印。178 pp. 劉惠菱。2009。麻竹筍採後生理與貯藏技術之研究。國立中興大學園藝學系碩士論 文。台中。 劉顯達、郭孟祥。1976。茭白黑穗病之研究 I:茭白黑穗病病組織之解剖及病菌發 芽培養特性。屏東農專學報17:188-194。 劉顯達、郭孟祥。1980。筊白筍及黑穗菌植物激素抽取及鑑定。屏東農專學報21: 106-114。 鍾光仁。1989a。茭白筍黑穗病菌營養需求,培養特性及IAA合成之研究。國立中 興大學植物病理學系碩士論文。台中。 鍾維榮。1989b。茭白筍栽培與管理。台中區農推專訊10(3): 16-23。 羅英妃。2005。茭白品種及黑穗菌系之研究。臺中區農業改良場特刊73:25-25(摘要)。 Apine, O. A and J. P. Jadhav. 2011. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J. App. Microbiol. 110: 1235-1244. Bauer, R., K. Mendgen, and F. Oberwinkler. 1995. Cellular interaction of the smut fungus Ustacystis waldsteiniae. Can. J. Bot. 73: 867-883. Bauer, R., F. Oberwinkler,and K. Vanky. 1997. Ultrastructural markers and systematics in smut fungi and allied taxa. Can. J. Bot. 75: 1273-1314. Beaudry, R. M.. 2000. Responses of horticultural commodities to low oxygen: limits to the expanded use of modified atmosphere packaging. Hort. Technol. 10(3): 491-500. Bennett, J.W., L.S. Lee, C. Vinnett. 1971. The correlation of aflatoxin and norsolorinic acid production. J. Amer. Oil Chem. Soc. 48: 368-370. Bomke, C. and B. Tudzynski. 2009. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70: 1876-1893. Bose, A., S. Dharti, and K. Haresh. 2014. Production of indole-3-acetic-acid(IAA) by the white rot fungus Pleurotus ostreatus under submerged condition of Jatropha seedcake. Mycology 4(2): 103-111. Bottini, R., F. Cassan, and P. Piccoli. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65: 497-503. Bruce, S. A., B. J. Saville, and R. J. Neil Emery. 2011. Ustilago maydis produces cytokinins and abscisic acid for potential regulation of tumor formation in maize. J. Plant Growth Regul. 30: 51-63. Burton, W. G.. 1982. Postharvest physiology of food crops. Longman, London & New York. p. 339. Chan, Y.S. and L.B. Thrower. 1980a. The host-parasite relationship between Zizania caduciflora Turccz. and Ustilago esculenta P. Henn. I. Structure and development of the host and host-parasite combination. New Phytol. 85:201-207. Chan, Y. S. and L. B. Thrower. 1980b. The host-parasite relationship between Zizania caduciflora Trucz. and Ustilago esculenta P. Henn.Ⅱ. Ustilago esculenta in culture. New Phytologist 85: 209-216. Chan, Y. S. and L. B. Thrower. 1980c. The host-parasite relationship between Zizania caduciflora Trucz. and Ustilago esculenta P. Henn. IV. Growth substances in the host-parasite combination. New Phytologist 85: 225-233. Chen, H. W., Y. H. Lin, J. W. Huang, and P. F. L. Chang. 2010. Effect of Bacillus mycoides on seedlings growth of lettuce. Plant Pathol. Bull. 19: 157-165. Chung, K. R. and D. D. Tzeng. 2004a. Nutritional requirements of the edible gallproducing fungus Ustilago esculenta. J. Biol. Sci. 4(2): 246-252. Chung K.R. and D.D. Tzeng. 2004b. Biosynthesis of indole-3-acetic acid by gall-inducing fungus Ustilago esculenta. J. Biol. Sci. 4(6): 744-750. Costa, C., A. Lucera, A. Conte, M. Mastromatteo, B. Speranza, A. Antonacci, and M. A. Del Nobile. 2011. Effect of passive and active modified atmosphere packaging conditions on ready-to-eat table grape. J. Food Eng. 102: 115-121. Gaspar, J., F. A. Couto, L. C. C. Salomao, F. L. Finger, and A. Cardoso. 1997. Effect of low temperature and plastic films on post-harvest life of guava (Psidium guajava L.). Acta Hortic. 452: 107-114. Gay, G., R. Rouillon, J. Bernillon, and J. Favre-Bonvin. 1989. IAA biosynthesis by the ectomycorrhizal fungus Hebeloma hiemale as affected by different precursors. Can. J. Bot. 67(8): 2235-2239. Guo, H. B., S. M Li, J. Peng, and W. D. Ke. 2007. Zizania latifolia Turcz. cultivated in China. Genet. Resour. Crop Ev. 54: 1211-1217. Hartung, W.. 2010. The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct. Plant Biol. 37: 806-812. Hennings, P.. 1895. Neue und interessante Pilze aus dem Konigl. botanischen Museum in Berlin. III. Hedwigia. 34(1): 10-13. Huang, C. S.. 1978. Cytological and agronomical studies on American wild-rice, Zizania palustris and its related species. J. Assoc. China 103: 20-42. Huang, P. Y.. 2007. Beneficial plant pathogens. p. 9-13. In: J. Janick, J. Van Assche, K. Van Dijck, and P. Vanderborght (eds.). Chronica horticulturae 47(3). International Society for Horticultural Science. Leuven, Belgium. Hung, S. F., T. L. Chang, I. Z. Chen, C. N. Chang. 2006. Anatomic observation of the symbiotic coba(Zizania latifolia Turcz.) and Ustilago esculenta P. Henn. J. Taiwan Soc. Hort. Sci. 52(3):291-296. Hussain, A. and S. Hasnain. 2011. Interactions of bacterial cytokinins and IAA in the rhizosphere may alter phytostimulatory efficiency of rhizobacteria. World J. Microbiol. Biotechnol. 27: 2645-2654. Idris, E. E. S., H. Bochow, H. Ross, and R. Borriss. 2004. Use of Bacillus subtilis as biocontrol agent. VI. Phytohormone like action of culture filtrates prepared form plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J. Plant. Dis. Prot. 111: 583-597. Javanmardi, J. and C. Kubota. 2006. Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biol. Technol. 41: 151-155. Jiang, J. Z., B. S. Cao, K. F. Huang, Q. Zhang, X. Q. Han, and Q. S. Zhu. 2005. Changes of NSC, enzymes and endogenous hormones during Zizania galls swelling. Acta Hort. Sin. 32(1): 134-137. Jiang, J. Z., J. J. Qiu, X. Q. Han, B. S. Cao, and Q. S. Zhu. 2004. Changes of endogenous hormone contents of different parts during development of water Bamboo(Zizania latifolia). J. Wuhan Bot. Res. 22(3): 245-250. Jiang, J. Z., X. Q. Han, B. S. Cao, L. M. Yuan, and Q. S. Zhu. 2006. Some biological characteristics of Ustilago esculenta in different Zizania latifolia cultivars. Jiangsu J. Agr. Sci. 22(1): 71-75. Joffe, A.Z. and N. Lisker. 1969. Effects of light, temperature, and pH value on aflatoxin production in vitro. Appl. Microbiol. 18: 517-518. Junk, W. B. V.. 1974. Water plants of the world. The Haugue. p. 441-444. Kader, A. A.. 2002. Postharvest biology and technology: an overview. p. 39-54. In: A. A. Kader (ed.). UCANR Publications. California. Kader, A. A.. 2003. A summary of CA requirements and recommendations for fruits other than apples and pears. Acta Hortic. 600: 737-740. Kader, A. A., A. Chordas, and S. Elyatem. 1984. Responses of pomegranates to ethylene treatment and storage temperature. California Agri. 38(7): 14-15. Karadeniz, A., Ş. F. Topcuoğlu, and S. İnan. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22: 1061-1064. Kettner, J. and K. Dorfoing. 1987. Abscisic acid metabolism in Ceratocystis coerulescens. Physiol. Plant. 69(2): 278-282. Kleinhenz, V., M. Gosbee, S. Elsmore, T.W. Lyall, K. Blackburn, K. Harrower, and D.J. Midmore. 2000. Storage methods for extending shelf life of fresh, edible bamboo shoots [Bambusa oldhamii (Munro)]. Postharvest Biol. Technol. 19: 253-264. Li, H. L.. 1966. The origin of cultivates plants in south-east Asia. The Chinese Univ. of Hong Kong. (In Chinese) The Chinese Univ. Press. Hong Kong. Li, Z. L., W. Y. You, K. Q. Zou, and Z. H. Ye. 2010. Morphological observation and phylogenetic analysis of Ustilago esculenta. J. China Jiliang Univ. 21(2): 140-145. Lin, C. H. and L. R. Chang. 1981. Studies on the gall formation of Zizania latifolia Turcz.. I. Anatomical approaches. Proc. Natl. Sci. Counc. B. R.O.C. 5(3): 293-296. Lin, F. K.. 1981. Physiology of an edible smut, Ustilago esculenta: growth requirements, utilization of amino acid, and cellular composition. Bot. Bull. Academia Sinica 22: 103-111. Lin, Y. J., E. X. Zhan, and P. Y. Xiao. 2006. Study on shake-flask culture conditions of Ustilago esculenta fermentation. Acta Agriculturae Zhejiangensis 18(5): 344-347. Liou, R. M. and C. C. Young. 2002. Effects of inoculation phosphate-solubilizing rhizobia on the growth and nutrient uptakes of crops. Soil and Environ. 5(2): 153-164. Luo, H. B., J. Jiang, L. Zhang, L. Jiang, and Z. Yu. 2012. Quality changes of whole and fresh-cut Zizania latifolia during refrigerated (1℃) storage. Food Bioprocess Tech. 5: 1411-1415. Luo, H. B., J. Jiang, L. Zhang, L. Jiang, L. R. Fu, Y. Y. Dai, and Z. F. Yu. 2013a. Effect of gibberellic acid and 6-benzylaminopurine on lignification of fresh-cut Zizania latifolia during refrigerated (1℃) storage. J. Food Process. Preserv. 37(5): 864-869 Luo, H. B., L. Jiang, Y. H. Bao, L. B. Wang, and Z. F. Yu. 2013b. Effect of chitosan/nano-chitosan composite coating on browning and lignification of fresh-cut Zizania latifolia. J. Food Qual. 36: 426-431. Luo, Z., X. Xu, Z. Cai, and B. Yan. 2007. Effects of ethylene and 1-methylcyclopropene (1-MCP) on lignifications of postharvest bamboo shoots. Food Chem. 105: 521-527. Maor, R., S. Haskin, H. Levi-Kedmi, and A. Sharon. 2004. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. App. Environ. Microbiol. 70: 1852-1854. Moulton, J. E.. 1942. Extraction of auxin from maize, from smut tumors of maize, and from Ustilago zeae. Bot. gaz. 103: 725-739. Oduor G., G. J. De Moraes, L. P. S. Van Der Geest, and J. S. Yaninek. 1996. Production and germination of primary conidia of Neozygites floridana (Zygomycetes: Entomophthorales) under constant temperatures, humidities, and photoperiods. J. Invertebr. Pathol. 68: 213-222. Oueslati, S., S. Lasram, A. J. Ramos, S. Marin, A. Mliki, V. Sanchis, and A. Ghorbel. 2010. Alternating temperatures and photoperiod effects on fungal growth and ochratoxin A production by Aspergillus carbonarius isolated from Tunisian grapes. Int. J. Food Microbiol. 139: 210-213. Pereira, L. M., A. C. C. Rodrigues, C. I. G. L. Sarantopoulos, V. C. A. Junqueira, R. L. Cunha, and M. D. Hubinger. 2004. Influence of modified atmosphere packaging and osmotic dehydration on the quality maintenance of minimally processed guavas. J. Food Sci. 69(4): 172-177. Pertry, I., K. Vaclavikova, S. Depuydt, P. Galuszka, L. Spichal, W. Temmerman, E. Stes, T. Schmulling, T. Kakimoto, M. C. E. Van Montagu, M. Strnad, M. Holsters, P. Tarkowski, and D. Vereeckea. 2009. Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc. Nalt. Acad. Sci. USA. 106(3): 929-934. Piepenbring, M., Matthias Stoll, and F. Oberwinkler. 2002. The generic position of Ustilago maydis, Ustilago scitaminea, and Ustilago esculenta (Ustilaginales). Mycol. Prog. 1(1): 71-80. Primrose, S. B. and M. J. Dilwortht. 1976. Ethylene production by bacteria. J. Gen. Mocrobiol. 93: 177-181. Reineke, G., B. Heinze, J. Schirawski, H. Buettner, R. Kahmann, and C.W. Basse. 2008. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol. Plant Pathol. 9(3): 339-355. Robinson, J. E., K. M. Browne, and W. G. Burton. 1975. Storage characteristics of some vegetables and soft fruits. Ann. Appl. Biol. 81: 399-408. Rousk, J. and E. Baath. 2011. Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol. Ecol. 78: 17-30. Sosa-Morales, M. E., F. Guevara-Lara, V. M. Martinez-Juarez, and O. Paredes-Lopez. 1997. Production of indole-3-acetic acid by mutant strains of Ustilago maydis (maize smut / huitlacoche). Appl. Microbiol. Biotechnol. 48: 726-729. Stoll, M., M. Piepenbring, D. Begerow, and F. Oberwinkler. 2003. Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences. Can. J. Bot. 81: 976-984. Su, H. J.. 1961. Some cultural studies on Ustilago esculenta. Special Publication, College, Agriculture, National Taiwan University 10: 139-160. Suzuki, T., J. H. Choi, T. Kawaguchi, K. Yamashita, A. Morita, H. Hirai, K. Nagai, T. Hirose, S. Omura, T. Sunazuka, and H. Kawagishi. 2012. Makomotindoline from Makomotake, Zizania latifolia infected with Ustilago esculenta. Bioorg. Med. Chem. Lett. 22: 4246-4248. Terrell, E. E. and L. R. Batra. 1982. Zizania latifolia and Ustilago esculenta, a grassfungus association. Econ. Bot. 3(36): 274-285. Tsavkelova, E. A., S. Y. Klimova, T. A. Cherdyntseva, and A. I. Netrusov. 2006. Microbial producers of plant growth stimulators and their practical use: a review. Appl. Biochem. Microbiol. 42: 117-126. U nyayar, S., A. U nyayar, and E.U nal. 2000. Production of auxin and abscisic acid by Phanerochaete chrysosporium ME446 immobilized on polyurethane foam. Turk. J. Biol. 24:769–774. Whipps, J. M.. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511. Wolf, F. T.. 1952. The production of indole acetic acid by Ustilago Zeae, and its possible significance in tumor formation. Proc. Natl. Acad. Sci. USA 38(2): 106-111. Woodward, A.W. and B. Bartel. 2005. Auxin: regulation, action, and interaction. Ann. Bot. (Lond.) 95: 707-735. Xin, G., D. Glaweb, and S. L. Dotyc. 2009. Characterization of three endophytic, indole-3-acetic acid producing yeasts occurring in Populus trees. Myco. Res. 113: 973-980. Xu, X. W., W. D. Ke, X. P. Yu, J. Wen, and S. Ge. 2008. A preliminary study on population genetic structure and phylogeography of the wild and cultivated Zizania latifolia (Poaceae) based on Adh1a sequences. Theor. Appl. Genet. 116: 835-843. Yang, H. C. and L. S. Leu. 1978. Formation and histopathology of galls induced by Ustilago esculenta in Zizania latifolia. Phytopathology, 68(11): 1572-1576. Yu, L. W., Y. T. Chen, L. M. Wu, C. H. Chang, L. N. Huang, and C. C. Liao. 2010. A mixed formulation of microbial agents for turfgrass disease control and growth promotion of vegetable seedlings. Taiwanese J. Agr. Che. Food Sci. 48(5): 224-232. You, W. Y., Q. Liu, K. Zou, X. P. Yu, H. F. Cui, and Z. H. Ye. 2011. Morphological and molecular differences in two strains of Ustilago esculenta. Curr. Microbiol. 62: 44-54. Yurekli, F., H. Geckil, and F. Topcuoglu. 2003. The synthesis of indole-3-acetic acid by the industrially important white-rot fungus Lentinus sajor-caju under different culture conditions. Mycol. Res. 107: 305-309. Zhang J.Z., F.Q. Chu, D.P. Guo, K.D. Hyde, and G.L. Xie. 2012. Cytology and ultrastructure of interactions between Ustilago esculenta and Zizania latifolia. Mycol. Prog. 11:499-508. Zhang, J. Z., F. Q. Chu, D. P. Guo, M. R. Ojaghian, and K. D. Hyde. 2014. The vacuoles containing multivesicular bodies: a new observation in interaction between Ustilago esculenta and Zizania latifolia. Eur. J. Plant Pathol. 138: 79-91.
摘要: I. Studies of Chlorophyll Fluorescence as an Indicator to Evaluate the Tolerance to Temperature Stress of Litchi (Litchi chinensis).   In recently years global weather conditions are becoming abnormal. The frequency and intensity of extreme weathers also increase such as drought, flooding, heat wave, cold current, typhoon and rainstorm, impacting on agricultural productivity and crop cultivation. For adapting to unusual weathers, it is important to breed crops with heat and cold tolerance genotypes. In the breeding process of fruit trees, if we can establish a quick and simple way to screen, that will be helpful for breeding work. Chlorophyll fluorescence determination method is simple, rapid, sensitive, high-mobility and non-destructive. In this experiment, we used chlorophyll fluorescence as a screening indicator to test several mature leaves of litchi cultivars: 'Tai-Nong No.1', 'Tai-Nong No.3', 'Tai-Nong No.5', 'Tai-Nong No.7', 'Yuh-Her-Bau', 'Nuomici', 'Gui-Wei', 'Hei-Yeh', and 'San-Yueh-Hnug' with heat (50℃) and cold (1℃) treatment. Using the chlorophyll fluorescence method, we selected 3 cultivars for further screening: heat-tolerance cultivar 'Nuomici' and heat-sensitive cultivar 'Tai-Nong No.1', coldtolerance cultivar 'Tai-Nong No.1', and cold-sensitive cultivar 'Gui-Wei'. The results indicated that whether litchi leaves underwent heat or cold stress, electrolyte leakage varied irregularly. It might be the influence of leaf texture. Comparing with untreatment leaves and calculating the index of electrolyte leakage, the value of sensitive cultivars were higher than tolerance cultivars. Temperature stress increases electrolyte leakage of sensitive cultivars. High temperature inhibited respiration rate of tolerance and sensitive cultivars both while cold tolerance cultivar didn't influence by low temperature and cold sensitive cultivar changed significantly, declining after raising. Ethylene production was also inhibited by high temperature. Ethylene production rate of heat tolerance cultivar decreased slower than heat sensitive cultivar. Ethylene production of cold tolerance cultivar didn't influence by low temperature and cold sensitive cultivar increased significantly. Malondialdehyde content declined with heat treatment in heat sensitive cultivar while in heat tolerance cultivar, the content increased followed by descent. Malondialdehyde content of cold tolerance cultivar didn't influence by low temperature and cold sensitive cultivar varied irregularly. To sum up the manifestation of physiologies above, they conformed to the result of chlorophyll fluorescence mostly. Chlorophyll fluorescence could be a screening indicator. But it still needs to do research and comparison with whole plant and reproductive system like pollen or growth of fruit to build a complete screening system. II. The Optimum Temperature for Water Bamboo Storage and Effect of Temperature and Photoperiod on the Mycelium Growth of Ustilago esculenta P. Henn.   Water bamboo (Zizania latifolia Turcz.), which belongs to the tribe Oryzeae within Gramineae, is a perennial aquatic plant. Water bamboo is systemically infected by the smut fungus(Ustilago esculenta P. Henn.) and stem will enlarge greatly to produce an edible structure. In Taiwan, water bamboo is an important vegetable during summer and autumn. This experiment studied the effect of different storage temperature on water bamboo qualities after harvest, storaging water bamboo at 25, 15, 8, and 1℃. Expect 1 ℃, the a* value of sheath increased with storage time. It meant the sheath became chlorisis during storage, and faster yellowing with higher storage temperature. The base of water bamboo also got browning during storage, and the rate of browning had a positive correlation with storage temperature. The weight loss rate also increased with storage and had a positive correlation with storage temperature. The cut force increased in early storage in every storage temperature. At the end of storage, cut force increased 18% in 25℃; decreased 17% and 18% in 15and 8℃ separately; increased 26% in 1℃. The appearance of spot inside was fortuitous and slight, without relativity with storage. Water bamboo storaged in 1℃which had the best storability could maintain good qualities until 72 days. Water bamboo storaged in 25℃which had the worst storability showed quality deterioration such as water loss and decay at 14 days after storage. According to many researches, numerous auxin and cytokinin could be detected while water bamboo is infected by Ustilago esculenta P. Henn.. As a result, Ustilago esculenta P. Henn. which has ability to synthesize IAA in vitro has potential to become bioagent. In this experiment, we studied the effect of different temperature and photoperiod on growth of Ustilago esculenta P. Henn., meanwhile, observed the tomato seedlings irrigated with fungi broth. Ustilago esculenta P. Henn. was cultured in 30, 25, 20, 15, 8, and 1℃. Within the range from 1 to 25℃, higher temperature could promote the growth of fungus. The fungus grew fastest in 25℃, and those culturing in 20 and 30 ℃ were second place. In 1℃, the growth of fungus was totally inhibited. In photoperiod experiment, we cultured fungus in 25℃ and the treatment were 24 hours daylight (D/N=24/0), long photoperiod (D/N=18/6), mid photoperiod (D/N=12/12), short photoperiod (D/N=6/18), and 24 hours dark (D/N=0/24). There was no significant variation between treatments. If we cultured the fungus in 15℃, the growth of fungus treated with 24 hours daylight and long photoperiod were better than treated with short photoperiod and 24 hours dark. In vitro suspension culture of mycelium with Yeast extract broth liquid medium shaking for 2 weeks, and then prepared fungi broth with different ration to irrigate to tomato seedlings. During growth of seedlings, the plant treated with yeast broth mixed with 5 ml PDA medium fulled with Ustilago esculenta P. Henn. mycelium 10 times dilution showed the best growth rate, but there was no significant variation compared with control (water irrigation). There was no significant relativity between dilution ratio and seedling growth.
第一部分、評估葉綠素螢光作為荔枝對溫度逆境忍受性指標之研究   近年來全球氣候異常且極端氣象發生的頻率與強度也有增加的現象,如旱、澇、熱浪、寒流、颱風、暴雨,對於農業生產與作物栽培產生了莫大的衝擊與影響,為因應這些異常的氣候,選育出具有耐熱和耐寒潛力的作物基因型是相當重要的,而在果樹育種的過程中,如可建立一快速且簡單的篩選方法,對於育種工作將會有很大的幫助。葉綠素螢光測定的方法簡單、快速、靈敏、機動性高且為非破壞性,故本試驗便以葉綠素螢光做為一篩選指標,針對荔枝包含'台農1 號'、'台農3 號'、'台農5 號'、'台農7 號'、'玉荷苞'、'糯米糍'、'桂味'、'黑葉'及'三月紅'共9 個荔枝品種成熟離體葉片,分別進行高溫50℃及低溫1℃的測定,篩選出耐熱品種'糯米糍'及不耐熱品種'台農1 號';耐寒品種'台農1 號'及不耐寒品種'桂味'。處理的結果顯示荔枝葉片電解質滲漏率大多呈現不規則的變化,推測可能與葉片質地有關,但若與未處理葉片相比計算電解質滲漏指數,則皆以耐逆境品種低於不耐逆境品種,說明溫度逆境對於不耐逆境品種仍會造成其電解質滲漏的現象加劇。而呼吸率的部分在高溫處理下皆會造成呼吸作用的抑制;但在低溫處理下耐低溫品種呼吸率並不受低溫影響,不耐低溫品種則會有顯著的變化而先升後降。乙烯生合成同樣會受到高溫抑制,且耐高溫品種乙烯生合成速率下降較不耐高溫品種來得慢;而低溫處理則不會對耐寒品種造成影響,但不耐低溫品種則會有顯著的上升。最後在丙二醛含量的部分,不耐熱品種其含量會隨處理時間顯著下降,耐熱品種則會先升後降;耐寒品種則不受低溫處理的影響,而不耐寒品種則會呈現一不規則的變化。綜合各生理指標的表現,與葉綠素螢光的篩選結果大致相符,因此葉綠素螢光確實可做為荔枝在溫度逆境下的生理指標,但若欲以其做為育種篩選的方法,則仍須進一步針對整株植體以及生殖系統如花粉或果實發育等生理進行研究,以建立更完整的篩選系統。 第二部分、茭白筍之最適貯藏溫度與溫度及光週期對菰黑穗菌菌絲生長之影響   筊白(Zizania latifolia Turcz.)屬於禾本科菰屬(Zizania)的宿根性多年生水生草本植物,莖部受到菰黑穗菌(Ustilago esculenta P. Henn.)寄生而產生異常膨大現象,使原本中空之莖部充實,形成肥大嫩莖可做為蔬菜食用,為夏、秋季重要的蔬菜之一。本試驗針對筊白筍產品在不同貯藏溫度下其品質的變化進行初步探討,分別以25、15、8 及1℃進行貯藏,葉鞘的顏色除了貯藏於1℃以外,其他溫度下筊白筍葉鞘a*值都會顯著的增加,且貯藏溫度越高,增加的速率越快而顯現出葉鞘黃化的現象;在基部則是各個溫度皆會有褐化現象,且黃化速度與貯藏溫度呈正相關;而在內部筍肉顏色大致上無顯著的變化。失重率皆會隨著貯藏時間增加而上升,且貯藏溫度越高,增加的速率越快。筍肉的截切力在各個溫度下貯藏初期截切力都有上升的現象,但到貯藏終點貯藏於25℃比貯藏前增加了18 %;15 及8℃則分別比貯藏前下降了17 %及18 %;而1℃比貯藏前約增加26 %。至於黑心現象則與貯藏溫度無相關性,且為偶發性,程度並不嚴重。筊白筍貯藏於25、15、8及1℃,貯藏力以1℃最佳,可貯藏達72 天,而25℃最差,僅貯藏了14 天後便有嚴重的失水、腐爛等劣變的現象而失去商品價值。文獻指出受到菰黑穗菌寄生筊白於筊白植株,會產生吲哚乙酸(Indo acetic acid;IAA)與細胞分裂素,被認為是主要促使筊白莖部膨大的原因,離體培養也可偵測到IAA 的含量增加,具有商品化的潛力,故探討菰黑穗菌培養時溫度及光週期對其生長的影響,並以菌液對番茄幼苗進行澆灌處理。以30、25、20、15、8 及1℃進行菌絲塊的培養,在1℃至25℃的範圍內,溫度的提升可顯著的增加真菌生長的速度,而6 種溫度下以培養於25℃的黑穗菌其菌絲生長情形最佳,其次為培養於20 與30℃,若培養於1℃則可完全抑制菌絲的生長。若將菌絲處理全日照(D/N=24/0)、長日處理18 小時(D/N=18/6)、中日處理(D/N=12/12)、短日處理(D/N=6/18)、及全暗處理(D/N=0/24),培養於25℃下,則各處理間菌絲生長情形並無顯著差異,但若培養於15℃下則以全日照及長日處理菌絲生長的情形較佳。將菌絲培養於酵母液態培養基中震盪培養2 周後,配製成不同濃度的菌液對番茄幼苗進行澆灌,可發現幼苗生長過程中皆以加入長滿黑穗菌絲之5 ml PDA 培養基之酵母培養液稀釋10 倍施用有最佳的生長百分比,但與純水處理相比統計上差異並不顯著,各菌液處理間幼苗生長情形與菌液稀釋倍率亦無相關性。
URI: http://hdl.handle.net/11455/89176
其他識別: U0005-0107201420485400
文章公開時間: 2017-12-16
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.