Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89177
DC FieldValueLanguage
dc.contributor宋妤zh_TW
dc.contributor.authorLing-Yuan Chenen_US
dc.contributor.author陳鈴淵zh_TW
dc.contributor.other園藝學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-07T06:29:16Z-
dc.identifierU0005-2507201511333300zh_TW
dc.identifier.citation103年農業統計年報。2015。行政院農業委員會。台北。台灣。 王昭月、曾夢蛟。2010。利用葉綠素螢光與有效授粉估測甜椒之耐熱性。台灣農業研究59(4):237-248。 王树全、刘国成、秦嗣军、吕德国。2007。不同根域空間對寒富蘋果幼樹生長發育影響的研究。遼寧林業科技3:10-12。 乔文艳、崔洪霞、刘家迅、姜闯道、石雷。2010。高山杜鵑'Boursault'幼苗對容器栽培的生長回應。園藝學報37(6):977-983。 汤谧、赵鸿飞、别之龙、伊鸿平、曾红霞、孙玉宏。2012。不同栽培基質對西甜瓜果實品質的影響。北方園藝6:4-6。 吳黃清雲。2010。椰纖作為番茄無土栽培介質可行性之評估。國立中興大學園藝學系碩士論文。台中。台灣。 呂理福。1988。養液栽培之種類及其特點 p.6-20。養液栽培技術講習會專刊第一輯。台灣省農業試驗所鳳山熱帶園藝試驗分所編印。 李文汕。1999。蔬菜無土介質容器栽培 p.1-17。蔬菜容器栽培技術開發研討會專輯。國立中興大學編印。 李阿嬌。2001。袋(籃)耕果菜類之概況。桃園區農業專訊37:16-19。 杨洪?、李林光、接玉玲。2001。園藝植物的根系限制及其應用。園藝學報28(增刊):705-710。 李阿嬌。2002。袋(籃)耕果菜栽培技術。桃園區農業專訊40:26-28。 李阿嬌。2005。栽培介質對籃耕紅色甜椒栽培之影響。桃園區農業改良場研究彙報57:14-21。 李國權、林深林、林慧玲。1999。蔬菜無土介質容器栽培 p.27-38。蔬菜容器栽培技術開發研討會專輯。國立中興大學編印。 沈再發、許淼淼。1990。溫室洋香瓜水耕之養分吸收研究。中華農業研究39(1):55-64。 沈再發、許淼淼。1994。溫室洋香瓜栽培季節與義液吸收量之研究。中華農業研究43(2):182-194。 林世旻。2011。黃皮洋香瓜直立式栽培之結果生理及使用NaCl對果實品質之影響。國立中興大學園藝學系碩士論文。台中。台灣。 林英志。2003。植株密度與雙層栽培對袋耕番茄生育與產量之影響。國立中興大學園藝學系碩士論文。台中。台灣。 林楨祐、陳甘澍、林照能。2009。東方甜瓜之設施栽培技術介紹。農業試驗所技術服務80:8-10。 姚銘輝、陳守泓、漆匡時。2007。利用葉綠素螢光估算作物葉片之光合作用。台灣農業研究56(3):224-236。 施純堅。1999。澎湖地區高品質洋香瓜栽培之研究Ⅱ。種植期與結果節位上方葉片數對溫室洋香瓜生長與品質之影響。高雄區農業改良場研究彙報10(2):51-63。 高德錚。1989。國內外各種養液栽培法特性之比較 p.17-43。養液栽培技術講習會專刊第二輯。台灣省農業試驗所鳳山熱帶園藝試驗分所編印。 莊國誌。2010。直立式栽培整枝方式及氯化鈉處理對東方型甜瓜植株生育、果實產量與品質之影響。國立中興大學園藝學系碩士論文。台中。台灣。 郭世?、李式军、程斐、马娜娜。2000。有機基質培在蔬菜無土栽培上的應用研究。瀋陽農業大學學報31(1):89-92。 黃圓滿、黃賢良。2005。甜瓜 p.459-464。臺灣農家要覽農作篇(二)。財團法人豐年社。台北。 黃圓滿、黃賢良。2009。作物簡介 p.2-6。植物保護圖鑑系列19-甜瓜保護。行政院農業委員會動植物防疫檢疫局。台北。 黃圓滿。2011。香瓜健康管理栽培操作要項。農業世界337:10-13。 黃賢良、鄭安秀、陳文雄。1999。隧道式洋香瓜栽培管理。行政院農業委員會台南區農業改良場。台南。台灣。 劉敏莉。2011。葉綠素螢光在作物耐熱篩選之應用。高雄區農業改良場研究彙報 21(1):1-15。 潘静娴、黄丹枫、王世平、贾志宽。2001。甜瓜幼苗生長及生理特性與根域體積相關關係研究。上海交通大學學報(農業科學報)19(1):24-29。 鄭安秀、黃圓滿、黃瑞彰、陳昇寬、彭瑞菊。2009。洋香瓜安全生產管理。行政院農業委員會台南區農業改良場。台南。台灣。 蘇博信。2012。高屏地區早春直立式東方甜瓜肥培管理技術的建立。高雄區農業專訊82:20-21。 山崎肯哉。1982。養液栽培全編。博友社。東京日本。 冥戶良洋、湯橋 勤、施山紀男、今田成雄。1992。果実光合成產物轉流、分配及葉位灌水量影響。日本園藝學雜誌60(4):897-903。 萩原十、余吾卓也。1944。西瓜葉面積果実関係。日本園藝學雜誌13(3):272-276。 Abad, M., F. Fornes, C. Carrión, V. Noguera, P. Noguera, Á. Maquieira, and R. Puchades. 2005. Physical properties of various coconut coir dusts compared to peat. HortScience 40(7):2138-2144. Arenas, M., C. S. Vavrina, J. A. Cornell, E. A. Hanlon, and G. J. Hochmuth. 2002. Coir as an alternative to peat in media for tomato transplant production. HortScience 37(2):309-312. Argo, W. R. and J. A. Biernbaum. 1996. Component comparisons: coconut coir. GrowerTalks 59:62-66. Baker, J. T. and V. R. Reddy. 2001. Temperature effects on phonological development and yield of muskmelon. Ann. Bot. 87:605-613. Ban, D., S. Goreta, and J. Borosic. 2006. Plant spacing and cultivar affect melon growth and yield components. Scientia Horticulturae 109:238-243. Baudoin, W. O., G. W. Winsor, and M. Schwarz 1990. Soilless culture for horticultural crop production. FAO Plant production and protection paper 101. Rome. 202pp. Benoit, F. and N. Ceustermans. 1995. Growing cucumber on ecologically sound substrate. Acta Hort. 396:55-66. Campagnol, R., S. C. Mello, and J. C. Barbosa. 2012. Vertical growth of mini watermelon according to the training height and plant density. Hortiv. Bras. 30:726-732. Cantliffe, D. J., N. L. Shaw, E. Jovicich, J. C. Rodribuez, I. Secker, and Z. Karchi. 2001. Passive ventilated high-roof greenhouse production of vegetables in a humid, mild winter climate. Acta Hort. 559:195-201. Carmi, A.. 1986. Effects of root zone volume and plant density on the vegetative and reproductive development of cotton. Field Crops Research 13:25-32. Duthie, J. A., B. W. Roberts, J. V. Edelson, and J. W. Shrefler. 1999. Plant density-dependent variation in density, frequency and size of watermelon fruits. Crop Sci. 39:412-417. Evans, M. R., S. Konduru, and R. H. Stamps, 1996. Source variation in physical and chemical properties of coconut coir dust. HortScience 31(6):965-967. Iersel, M. V. 1997. Root restriction effects on growth and development of salvia ( Salvia splendens ). HortScience 32(7):1186-1190. Ismail, M. R. and S. Dalia. 1995. Growth physiological processes and yield of tomatoes grown in different root zone volumes using sand culture. Pertanika J. Trop. Agric. Sci. 18(2):141-147. Jensen, M. H., Rorabaugh, P. A., and Garcia, A. M. 1998. Comparing five growing media for physical characteristics and tomato yield potential. Proc. Am. Soc. Plasticulture 27:31-34. Kharkina, T. G., C. O. Ottosen, and E. Rosenqvist. 1999. Effect of root restriction on the growth and physiology of cucumber plants. Physiologia Plantarum 105:434-441. Kultur, F., H. C. Harrison, and J. E. Staub. 2001. Spacing and genotype affect fruit sugar concentration, yield, and fruit size of muskmelon. HortScience 36(2):274-278. Maree, P. C. J.. 1994. Using bio-degradable material as growing media in hydroponics in the Republic of South Africa. Acta Hort. 361:141-151. Markham, J. and S. Halwas. 2011. Effect of neighbour presence and soil volume on the growth of Andropogon gerardii Vitman. Plant Ecology & Diversity 4(2-3):265-268. Maynard, E. T., C. S. Vavrina, and W. D. Scott. 1996. Containerized muskmelon transplants: cell volume effects on pretransplant development and subsequent yield. HortScience 31(1):58-61. Maynard, E. T. and W. D. Scott. 1998. Plant spacing affects yield of 'Superstar' muskmelon. HortScience 33(1):52-54. McConnaughay, K. D. M. and F. A. Bazzaz. 1991. Is physical space a soil resource? Ecology 72:94–103. Mendlinger, S.. 1994. Effect of increasing plant density and salinity on yield and fruit quality in muskmelon. Sci. Horti. 57:41-49. Nerson, H.. 2002. Relationship between plant density and fruit and seed production in muskmelon. J. Amer. Soc. Hort. Sci. 127(5):855-859. Nerson, H., M. Edelstein, H. S. Paris, Z. Karchi, and A. Govers. 1984. Effects of population density and plant spacing on the vegetative growth, flowering and yield of cv. Galia muskmelon. Hassadeh 64:698-702( abstr. ). NeSmith, D. S.. 1993. Influence of root restriction on two cultivars of summer squash ( Cucurbita pepo L. ). J. Plant Nutrition 16(3):421-431. NeSmith, D. S. and J. R. Duval. 1998. The effect of container size. HortTechnology 8(4):495-498. Nishizawa, T. and K. Saito. 1998. Effect of rooting volume restriction on the growth and carbohydrate concentration in tomato plants. J. Amer. Soc. Hort. Sci. 123(4):581-585. Norrie, J., M. E. D. Graham, J. Charbonneau, and A. Gosselin. 1995. Impact of irrigation management of greenhouse tomato: yield, nutrition, and salinity of peat substrate. Can J. Plant Sci. 75:497-503. Papadopoulos, A. P. and D. P. Ormrod. 1988. Plant spacing effects on photosynthesis and transpiration of the greenhouse tomato. Can. J. Plant Sci. 68:1209-1218. Papadopoulos, A. P. and S. Pararajasingham. 1997. The influence of plant spacing on light interception and use in greenhouse tomato ( Lycopersicon esculentum Mill ):a review. Scientia Horticulturae 69:1-29. Peterson, I. A., M. D. Reinsel, and D. T. Krizek. 1991. Tomato ( Lycopersicon esculentum Mill., cv. 'Better Bush' ) plant response to root restriction, I. Alteration of plant morphology. J. Expe. Bot. 42(243):1233- 1240. Poorter, H., J. Bühler, D. V. Dusschoten, J. Climent, and J. A. Postma. 2012. Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology 39:839-850. Raviv, M. and J. H. Lieth. 2008. Significance of soilless culture in agriculture. p. 1-12. In: Soilless culture: theory and practice. Elsevier Press, Oxford, UK. Robinson, R. W. and D. S. Decker-Walters. 1997. Major and minor crops, p. 65-70. In: Cucurbits. Cambridge Univ. Press, London, UK. Rodriguez, J. C., D. J. Cantliffe, N. L. Shaw, and Z. Karchi. 2006. Soilless media and containers for greenhouse production of 'Galia' type muskmelon. HortScience 41(5):1200-1205. Rodriguez, J. C., N. L. Shaw, and D. J. Cantliffe. 2007. Influence of plant density on yield and fruit quality of greenhouse-grown galia muskmelons. HortTechnology 17(4):580-585. Sanchez, V. M., F. J. Sundstrom, and N. S. Lang. 1993. Plant size influences bell peppr seed quality and yield. HortScience 28(8): 809-811. Sekimura, T., T. Roose, B. Li, P. K. Maini, J. I. Suzuki, and T. Hara. 2000. The effect of population density on shoot morphology of herbs in relation to light capture by leaves. Ecological Modelling 128:51-62. Semchenko, M., M. J. Hutchings, and E. A. John. 2007. Challenging the tragedy of the commons in root competition: confounding effects of neighbor presence and substrate volume. J. Ecology 95:252-260. Tittarelli, F., E. Rea, V. Verrastro, J. A. Pascual, S. Canali, F. G. Ceglie, A. Trinchera, and C. M. Rivera. 2009. Compost-based nursery substrates: effect of peat substitution on organic melon seedlings. Compost Science & Utilization 17(4):220-228. Watanabe, S., Y. Nakano, and K. Okano. 2003. Effect of planting density on fruit size, light-interception and photosynthetic activity of vertically trained watermelon ( Citrullus lanatus ( Thunb. ) Matsum. Et Nakai ) plants. J. Japan. Soc. Hort. Sci. 72(6):497-503. Zahara, M.. 1972. Effects of plant density on yield and quality of cantaloupes. California Agriculture 7:15.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/89177-
dc.description.abstractThe objectives of this thesis were to examine the effects of reducing the container volume, increasing the plant density, and using coir as an alternative to peat as a medium for melon culture. Oriental melon 'Jill' plants were transplanted in a plastic planter (60 x 12 x 18 cm, referred to as planter treatment) and a plastic bag used for planting mushrooms ( r = 5 cm, h = 23 cm, referred to as bag treatment ). After being planted for 25 days, the plant height of plants subjected to bag treatment was 101.96 cm, which was significantly greater than that of plants under planter treatment, at 98.13 cm. The interaction of container volume and leaf node significantly affected the photosynthesis chlorophyll fluorescence parameters and relative chlorophyll content index. The values of the electron transport rate, photosynthetically active radiation and relative chlorophyll content index on the 10th node leaf upwards of the fruiting node following bag treatment were greatest. The fruit harvest period of plants under bag treatment was significantly longer than that of plants under planter treatment. The fresh weight, dry weight and total leaf area of the 12 leaves upwards of the fruiting node were 114.31 g, 18.33 g and 3542.62 cm2, respectively, significantly larger than those of plants under planter treatment. There were no significant differences in the fruit weight and fruit shape index between plants grown under bag or planter treatment. The fruit flesh thickness and fruit flesh rate following bag treatment were higher, while the total soluble solids of fruit of plants under planter treatment, 14.0 0Brix, was significantly higher. Four or six melon plants per basket (box) were transplanted in plastic baskets (56 x 37 x 18 cm, referred to as basket treatment) and a plastic bag for planting mushrooms (r = 5 cm, h = 23 cm, referred to as bag treatment). After being transplanted for 21 days, the plant height, internode length and stem diameter of plants under basket treatment were significantly greater than those of plants under bag treatment. The total area, fresh weight and dry weight of the 12 leaves upwards of the fruiting node of the 4 plants per basket under basket treatment, which were 3061.66 cm2, 92.30 g and 13.81 g, respectively, were the maxima. The fresh weight and dry weight of leaves beneath the fruiting node were independent of the effects of container volume and plant density. The photosynthesis chlorophyll fluorescence parameters and relative chlorophyll content index of plants under bag treatment were not influenced by the plant density. The photosynthesis chlorophyll fluorescence parameters of plants under basket treatment were affected significantly by the plant density. There were no significant differences in the days to onset of anthesis, fruit harvest and development, fruit shape index, fruit flesh thickness, fruit flesh rate and total soluble solids of fruit between the different treatments. The fruit weight of the 4 plants per basket from plants under basket treatment was greatest at 441.54 g, while the fruit weight of the plants under bag treatment were not significantly different with differing plant densities. Oriental melon 'Jill' plants were transplanted into plastic baskets and bags used for planting mushrooms with 3 kinds of media: 100 % coir, 100 % commercial medium, and 50 % commercial medium + 50 % coir (v / v). After being transplanted for 28 days, there was no difference in plant height between plants grown using the different media formulas. The electron transport rate of the plants planted with coir was significantly lower under bag treatment, and the relative chlorophyll content index of plants planted with coir under basket treatment was significantly lower. The days to the onset of anthesis of plants planted with commercial formula under bag treatment was a maximum of 29.8 days. The days to fruit development and harvest were greatest at 39.2 days and 67.3 days, respectively, for plants cultured with coir under basket treatment. The fresh weight, dry weight, total leaf area, fruit weight, fruit flesh thickness and fruit flesh rate of plants planted with commercial media + coir media under basket treatment were greatest. The total soluble solids of fruit of plants planted with commercial media + coir media under bag treatment was greatest, while the total soluble solids was lowest in plants planted with coir under basket treatment. The results of this study showed that planting oriental melons in a 1.8-L plastic bag did not decrease the fruit quality, and coir could be mixed with peat moss as a medium for planting oriental melon.en_US
dc.description.abstract本葉展開2 – 3片的'嘉玉'東方型甜瓜定植於塑膠花槽(60 x 12 x 18 cm,簡稱槽耕)和種植菇類塑膠袋中(r=5 cm,h=23 cm,簡稱袋耕)。定植25天後袋耕處理株高為101.96 cm,明顯比槽耕處理的98.13 cm高。容器大小和葉片節位間的交感作用對葉片光合作用葉綠素螢光參數及相對葉綠素指數有明顯影響,電子傳遞速率、光合作用有效輻射強度及相對葉綠素含量指數以袋耕處理的結果節位之上第10片葉片最高。袋耕處理的果實達採收天數明顯比槽耕處理大,其結果節位以上12片葉片鮮重、乾重及總葉面積顯著大於槽耕處理,分別為114.31 g、18.33 g及3542.62 cm2。果實單果重及果形指數於槽耕和袋耕處理間没有差異,袋耕處理的果肉厚度及果肉率明顯較高,但糖度以槽耕處理的14.0 0Brix明顯較高。 分別以塑膠籃(56 x 37 x 18 cm,簡稱籃耕)和種植菇類塑膠袋(r=5 cm,h=23 cm,簡稱袋耕)為栽培容器,每籃(箱)種4株或6株的植株密度定植'嘉玉'東方型甜瓜,於21天後籃耕處理的株高、節間長及莖徑均明顯大於袋耕處理。結果節位以上12片葉片總葉面積、鮮重及乾重均以每籃種4株的籃耕處理最高,分別為3061.66 cm2、92.30 g及13.81 g,結果節位以下葉片鮮重及乾重則不受容器大小和植株密度的影響。袋耕處理的植株葉片其葉綠素螢光參數及相對葉綠素指數未受植株密度的影響,而籃耕處理的植株葉片其有效光量子產量、電子傳遞速率及有效輻射強度受植株密度的明顯影響,以每籃種4株的處理較高。雌花始花期、果實達採收天數及發育天數、果形指數、果肉厚度、果肉率及糖度於不同容器大小和植株密度的處理間没有明顯差異。果實單果重以每籃種4株的籃耕處理441.54 g最高,單果重於袋耕處理不同植株密度間没有明顯差異。 '嘉玉'東方型甜瓜以100 %椰纖、100 %商用培養土及50 %椰纖+50 %商用培養土(v / v)3種介質配方分別定植於塑膠籃及種植菇類塑膠袋中,定植28天後植株株高於不同介質配方間没有明顯差異,但以籃耕處理明顯較高。椰纖種植植株葉片於袋耕處理的電子傳遞速率明顯較低,於籃耕處理則以椰纖種植植株葉片的有效光量子產量及相對葉綠素含量指數明顯較低。雌花始花期以袋耕處理商用培養土種植之29.8天明顯最長,果實發育天數及達採收天數以籃耕處理椰纖種植之39.2天及67.3天最長。結果節位以上12片葉片鮮重、乾重、總葉面積、果實單果重、果肉厚度及果肉率均以籃耕處理商用培養土+椰纖介質配方種植植株最大,果實糖度則以袋耕處理商用培養土+椰纖種植之植株最高,而以籃耕處理椰纖種植植株最低。 本論文針對減少栽培容器容積大小、提高植株種植密度及以椰纖替代泥炭土作為栽培介質等三方面進行研究。試驗結果顯示以容積1.8 L的塑膠袋種植東方型甜瓜不會降低果實品質,但應注意栽培季節。最適合東方型甜瓜栽培的植株密度會因容器大小而有差異,而椰纖可混合泥炭土作為東方型甜瓜栽培介質使用,但應注意其混合比例及養液管理模式。zh_TW
dc.description.tableofcontents壹、中文摘要 1 貳、英文摘要 2 參、前言 4 肆、前人研究 5 一、東方型甜瓜生育特性及栽培管理 5 二、無土栽培技術發展 6 三、容器大小對植株生長的影響 7 (一)、限根對植株幼苗的影響 8 (二)、限根對植株生長的影響 8 四、植株種植密度對植株生長的影響 9 五、栽培介質對植株生長的影響 12 伍、試驗材料及方法 15 一、試驗材料 15 (一)、供試作物 15 (二)、介質材料 15 (三)、養液配方 15 二、試驗方法 16 (一)、育苗與定植 16 (二)、栽培管理 16 三、試驗處理 16 (一)、容器大小對'嘉玉'甜瓜生長的影響 16 (二)、容器大小及植株密度對'嘉玉'甜瓜生長的影響 17 (三)、容器大小及介質配方對'嘉玉'甜瓜生長的影響 17 四、調查項目與方法 17 (一)、植株地上部性狀 17 (二)、果實性狀調查 18 五、統計分析 18 陸、結果 19 一、容器大小對'嘉玉'甜瓜生長的影響 19 二、容器大小和植株密度對'嘉玉'甜瓜生長的影響 20 三、容器大小及介質配方對'嘉玉'甜瓜生長的影響 22 柒、討論 38 一、容器大小對'嘉玉'甜瓜生長的影響 38 二、容器大小和植株密度對'嘉玉'甜瓜生長的影響 40 三、容器大小和介質配方對'嘉玉'甜瓜生長的影響 43 捌、結論 47 玖、參考文獻 48zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-07-29起公開。zh_TW
dc.subject東方型甜瓜zh_TW
dc.subject容器大小zh_TW
dc.subject植株密度zh_TW
dc.subject介質zh_TW
dc.subject果實品質zh_TW
dc.subject籃耕zh_TW
dc.subject袋耕zh_TW
dc.subjectoriental melonen_US
dc.subjectcontainer volumeen_US
dc.subjectplant densityen_US
dc.subjectmediumen_US
dc.subjectfruit qualityen_US
dc.subjectbasket cultureen_US
dc.subjectbag cultureen_US
dc.title容器大小、植株密度和介質配方對東方型甜瓜生長的影響zh_TW
dc.titleEffects of container volume, plant density, and medium formulas on the growth of oriental melon ( Cucumis melo L. var. makuwa Makino ).en_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2016-07-29zh_TW
dc.date.openaccess2018-07-29-
Appears in Collections:園藝學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.