Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89179
標題: 建立低硝酸鹽含量小白菜之栽培管理模式
Establishing the cultivral model for obtaining low nitrate content in Pakchoi (Brassica campetstris L. Chinensis group)
作者: shih wen chen
陳詩文
關鍵字: 小白菜
硝酸根離子
氮利用率

養液
生物營養強化


Pakchoi
nitrate
nitrogen use efficiency
light
biofortification
selenium
iodine
引用: 王三太、林子凱。1995。台灣農家要覽-農作篇(二)。pp. 423-428。 王三太、林子凱。2005。小白菜。臺灣農家要覽。行政院農業委員會。 pp. 423-428。 王銀波。1989。培養液的化學性及其管理。養液栽培技術講習會專刊第二輯。 臺灣省農業試驗所鳳山熱帶園藝試驗分所。p. 60-68。 王銀波、吳正宗。1992。水耕養液中的氮素問題。養液栽培技術講習會 專刊第四輯。臺灣省農業試驗所鳳山熱帶園藝試驗分所。p. 15-27。 王銀波、吳正宗、申雍。1994。小白菜配方對其他葉菜類的適應性與一些影 響硝酸態氮含量的環境因子。設施園藝之研究與技術開發八十一及八十 二年度執行成果報告p.99-107。 池田英男。1981。Nitrate and ammonium N absorption by vegetable from nutrient solution。?#23398;杂 50(2):225-230。 李郁淳、洪進雄、蔡智賢、呂明雄。2001。日週期對植物體中硝酸離子吸收 及累積之影響。科學農業 49(11,12): 288-292。 何念祖、孟賜福。1987。植物營養原理。上海科學技術出版社。 何宇炯,徐如涓、趙橘。1996。表油菜素內酯對綠豆幼葉衰老的促進作用。植物生理學報 22 (1):58-62。 余讓才、范燕萍、李明啟。2002。光呼吸與硝酸還原關係研究 — 光呼吸抑制劑與代謝物對黃化小麥硝酸還原酶光誘導的影響。中國農業科學 1:49- 52。 沈再發。1990。植物生長與養液要素之關係。養液栽培技術講習會專刊第三 輯。臺灣省農業試驗所鳳山熱帶園藝試驗分所。p. 9-13。 沈再發。1997。養液的配置與管理。設施園藝技術:182-190。 沈再發。許淼淼。1989。作物的營養特性及影響養液組成之因素。養液栽培 技術講習會專刊第二輯。臺灣省農業試驗所鳳山熱帶園藝試驗所。p. 44-59。 沈再發、許淼淼。1991。蕹菜水耕之養液試驗。中華農學研究 40(4):407-416。 柯勇。2004。植物的礦物營養。植物生理學。藝軒。台北。p.105-144。 林岱平。2006。在亞熱帶生產低硝酸鹽蔬菜-主婦聯盟生活消費合作社檢驗資 料之分析。國立臺灣大學園藝研究所碩士論文。臺北。臺灣。 林淑妃。1998。利用栽培管理與貯藏方式降低葉菜類硝酸離子含量試驗。國 立台灣大學園藝所碩士論文。 吳正宗、王銀波 1995 一些影響小白菜硝酸態氮含量的環境因子 中國農業化 學誌3(2): 125-133。 吳正宗。1989。夏季小白菜水耕液配方及管理技術之研擬。國立中興大學土壤學研究所碩士論文。pp. 66。 吳正宗、王銀波。1991。夏季小白菜水耕液配方之初擬。農林學報 40(1):109-118。 吳敦虎,穆廣臣,傅家瑞。1998。噴施硒葉面肥對農作物含硒量影響的研究。 微量元素與健康研究 15 (1):46-47。 尚慶茂,高麗紅,潘根興。1998。硒素營養對水培萵苣品質的影響。中國農業大學學報 3 (3):67-71。 洪明谷、宋妤。2013。光質對'瑞喜'結球白菜種苗生長之影響。植物種苗 15(4):11-35. 胡秋輝,潘根興,高麗紅。低硒茶園茶葉富硒方法和富硒效應的研究。南京農業大學學報 22 (3):100-103。  段詠新,傅庭治,傅家瑞。1997。硒在大蒜體內的生物富集及其抗氧化作用。 園藝學報 24(4):343-347。 侯少范,薜泰鱗,譚見安。1994。高等植物中的谷胱甘肽過氧化物酶及其功能。科學通報 39 (6):553-556。 高德錚。1986。水耕栽培--精緻蔬菜生產技術之開發。台中區農推專訊 56:22-31。 高德錚。1991。動態式浮根式水耕系統之開發與利用。臺灣省臺中區農業改良場。pp. 275。 許福星。1997。作物生長分析及其應用。科學農業25 (11–12): 334-341。 郭静成,尹顺平。1998。硒對高等植物中GSH-PX活性及GSH含量的影響。西北植物學報 18 (4):533-537。 陳甘澍,劉政道。1992。高屏地區小白菜栽培品種簡介。農業試驗所技術服務 9:18-20。 陳建中。2002。多種肥培管理措施對小白菜硝酸態氮含量之影響。國立中興 大學土壤環境科學系碩士論文。 陳必鏈,黃鍵。1999。我國富鋅和富硒功能食品研究現狀。食品研究與開發 20(1):33-37。 張樹芹。2004。小麥葉片光呼吸與蛋白質積累關係的研究。麥類作物學報 20(3) :64-66。 張玲玲,張培祿等。1995。溫州蜜柑追施硒肥對果實含硒量的影響。浙江農業科學 20(2):70-72。 張簡秀容、張粲如。1995。臺灣短期葉菜類產業之概況及展望。臺灣蔬菜產 業改進研討會。桃園改良繁殖場出版。p. 153-166。 張盛添、高德錚、梁純玲、王夏玲、張惠真。1989。溫度、光照、氮肥、收 穫後貯藏及烹調方式對設施蔬菜品質之影響。第二屆設施園藝研討會專 集 pp.226-240。 譚鎮中、李振州、王銀波。2001。硝化抑制劑對小白菜植體中硝酸態氮含量 之影響。土壤與環境 4(1):47-54。 劉啟祥、林深林。1998。根溫處理對水耕小白菜地上部生理之影響。花蓮區研究彙報 16:47-57。 劉文科、楊其長、邱志平、越嬌嬌。2012。不同LED光質對生菜生長和影養品質的影響。蔬菜 11:63-65。 劉政道、林麗玉。2005。蕹菜。臺灣農家要覽。行政院農業委員會。pp. 403-408。 蔡尚光。1994。水耕栽培的經驗。淑馨出版社。 蔡素蕙、高德錚、黃山內、楊秋忠。1987。冬季蔬菜無機氮含量之研究。臺中區農業改良場研究彙報 15:63-69。 蔡素蕙、黃山內、楊秋忠。1995。有機及化學肥料對小白菜之生長、硝酸態氮及維生素含量之影響。中華農學會新報158:58-77。 蔡素蕙、楊秋忠、黃山內。1989。環境因子對蔬菜中硝酸及亞硝酸態氮累積之影響。土壤肥料試驗報告 78:189-199。 蔡宜?、戴振洋。2008。不同有機肥料種類及用量對有機葉菜類 氮、磷及鉀吸收特性之影響。臺中區農業改良場研究彙報101:21-34。 劉元英,羅盛國。1998。硒對大豆體內谷胱甘肽過氧化物酶活性的影響。大豆科學 17 (2):157-161。 蕭巧玲、楊純明、何佳勳、蔡淑珍、林毓雯。2013。 氮肥及氣象環境對設施葉萵苣生長及硝酸鹽含量之影響。環境與生物資訊 10:284-289。 薛泰麟,候少范,谭见安。1993。硒在高等植物體内的抗氧化作用。科學通報 38(3):274-279。 薛聰賢。2001。台灣蔬果實用百科第一輯。薛聰賢出版社。 羅盛國,李彥等。1999。硒對連作障礙下大豆膜脂過氧化損傷的影響。大豆科學 18 (3):224-229。 Abu-Rayyan, A., B. H. Kharawish, and K. Al-Ismail. 2004. Nitrate content in lettuce (Lactuca sativa L.) heads in relation to plant spacing, nitrogen form and irrigation level. J. Sci. Food Agric. 84:931-936. Adams, W. W., C. R. Zarter, V. Ebbert, and B. Demmig-Adams. 2004. Photoprotective strategies of overwintering evergreens. BioScience. 54:41-49. Ali, I. A., U. Kafakafi, Y. Sugimoto, and T. Inanaga. 1994. Response of sand grown tomato supplied with varying rating of nitrate/ammonium to constant and variable root temperatures. J. Plant Nutr. 7(11):2001-2004. Ali, N. A., D. Dewez, P. Y. Robidoux, and R. Popovic. 2006. Photosynthetic parameters as indicators of trinitrotoluene (TNT) inhibitory effect: change in chlorophyll a fluorescence induction upon exposure of Lactuca sativa to TNT. Ecotoxicol. 15:437-441. Amiour, N., S. Imbaud, G. Clément, N. Agier, M. Zivy, B. Valot, T. Balliau, P. Armengaud, I. Quilleré, and R. Cañas. 2012. The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. J. Exp. Bot. 63:5017-5033. Armstrong, F. A. J.. 1963. Determination of nitrate in water by ultraviolet spectrophotometry. Anal. Chem. 35:1292-1293. Anderson, J.. 1993. Selenium interactions in sulfur metabolism. In Sulfur Nutrition and Assimilation in Higher Plants: Regulatory Agricultural and Environmental Aspects. (De Kok, I. S. et al., eds) pp. 49-60. Appenroth, K. J., R. Meco, V. Jourdan, and K. Lillo. 2000. Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci. 159:51-56. Arnon, D. I. and D. R. Hoagland. 1940. Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Sci. 50:463. Arvy, M. P.. 1993. Selenate and selenite uptake and translocation in bean-plants (Phaseolus vulgaris). J. Exp. Bot. 44:1083-1087. Aslam, M., R. L. Travis, and D. W. Rains. 2001. Different effect of amino acids on nitrate uptake and reduction systems in barley roots. Plant Sci. 160: 219-228. Bai, K. D., D. B. Liao, D. B. Jiang, and K. F. Cao. 2008. Photosynthetic induction in leaves of co-occurring Fagus lucida and Castanopsis lamontii saplings grown in contrasting light environments. Trees 22:449-462. Bailey, L. H.. 1922. The cultivated Brassicas I. Gentes Herbarum 1, fasc. 2, 51- 108. Barta, D. J., T. W. Tibbits, R. J. Bula, and R. C. Morrow. 1992. Evaluation of light emitting diode characteristics for a space-based plant irradiation source. Adv. Space Res. 12:141-149. Barrow, N. J. and B. R. Whelan. 1989. Testing a mechanistic model. VIII. The effects of time and temperature of incubation on the sorption and subsequent desorption of selenite and selenate by a soil. J. Soil Sci. 40:29-37. Batal, K. M. and D. A. Smittle. 1981. Response of bell pepper to irrigation, nitrogen, and plant population. J. Amer. Soc. Hort. Sci. 106 (3): 259-262. Beevers, L. and R. H. Hageman. 1980. Nitrate and nitrite reduction. In: P. K. Sumpf, E. E. Conn, eds, The Biochemistry of Plants, VoI 5, Amino Acids and Derivatives. Academic Press, New York, p. 115-168. Beilstein, M. A., P. D. Whanger, and G. Q. Yang. 1991. Chemical forms of selenium in corn and rice grown in a high selenium area of China. Biomed. Environ. Sci. 4: 392-398. Björkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and Chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504. Blom-Zandstra, M. and A.H. Eenink. 1985. Nitrate concentration andreduction in different genotypes of lettuce. J. Amer. Soc. Hort. Sci.111:908-911. Blasco, B., J. J. Rı´os, L. M. Cervilla, E. Sa´nchez-Rodrı´guez, J. M. Ruiz, and L. Romero. 2008. Iodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Ann. App. Biol. 152:289-299. Blum, A. 2009. Effective use of water (EUW) and not water use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res. 112:119-123. Boon, J. V. D., J. W. Steenhuixen, and E. G. Steingrover. 1990. Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration, NH4+ / NO3- ratio and temperature of the recirculating nutrient solution. J. Hort. Sci. 65(3):309-321. Brown, C. S., A. C. Schuerger, and J. C. Sager. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Am. Soc. Hort. Sci.120:808-813. Botrel, A. and M. Kaiser. 1997. Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201: 496-501. Buchanan, B. B., W. Gruissem, and R. L. Jones. 2000. Nitrogen and sulfur. Biochem. Mol. Biol. plant 34:789-804. Bula, R. J, R. C. Morrow, T. W. Tibbitts, and D. J. Barta. 1991. Light-emitting diodes as a radiation source for plants. HortScience 26(2):203-205. Carrasco, G. A. and S. W. Burrage. 1993. Diurnal fluctuations in nitrate uptake and nitrate accumlation in lettuce (Lactuca sativa L.). Acta Hort. 339:137-147. Calatayud, A., J. W. Alvarado, and E. Barreno. 2002. Differences in ozone sensitivity in three varieties of cabbage (Brassica oleracea L.) in the rural Mediterranean area. J. Plant Physiol. 159:863-868. Cataldo, D. A., L. E. Haroon, L. E. Schrader, and V. L. Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Comm. Soil Sci. Plant Analy. 6:71-80. Cantliffe, D. J. 1972. Nitrate accumulation in spinach grown under different light intensities. J. Amer. Soc. Hort. Sci. 97:152-154. Castellanos, J. Z. and P. F. Pratt. 1981. Mineralization of manure nitrogen- correlation with laboratory indexes. Soil Sci. Soc. Am. J. 45:354-357. Chang, C., T. G. Sommerfeldt, and T. Entz. 1991. Soil chemistry after eleven annual applications of cattle feedlot manure. J. Environ. Qual. 20:475-480. Chen, B., Z. Wang, S. Li, and G. Wang. 2004. Effect of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 167:635-643. Cheng, C. L., G. N. Acedo, M. Cristinsin, and M. A. Conkling. 1992. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. USA. 89:1861-1864. Chow, T. J. and, M. S. Johnstone. 1962. Determination of nitrate in sea water. Anal. Chim. Acta 27:441-442. Chung, B.. 1982. The effects of plant density on the maturity and once-over harvest yields of broccoli. J. Hort. Sci. 57: 365-372. Chung, B.. 1985. The effects of sowing time and plant density on the once-over harvest yields of broccoli. J. Hort. Sci. 60: 57-64. Claussen, W. and F. Lenz. 1999. Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant Soil 208:95-102. Clark, R. B.. 1990. Physiology of cereals for mineral nutrient uptake, use, and efficiency. In Academic Press: Crops as Enhancers of Nutrient Use, eds. V. C. Baligar and R. R. Duncan, p. 131-209. San Diego, California. Clark, L. C., G. F. Combs, B. W. Turnbull, E. H. Slate, D. K. Chalker, J. Chow, L. S. Davis, R. A. Glover, G. F. Graham, E. G. Gross, A. Krongrad, J. L. Lesher, H. K. Park, B. B. Sanders, C. L. Smith, and J. R. Taylor. 1996. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin a randomized controlled trial – a randomized controlled trial. J. Am. Med. Assoc. 276: 1957-1963. Cutcliffe, J. A.. 1975. Effect of plant spacing on single-harvest yields of several broccoli cultivars. HortScience 10 (4): 417-419. Crawford, N. M.. 1995. Nitrate: nutrient and signal for plant growth. Plant Cell 7:859-868. Curtis, P. E., W. L. Ogren, and R. M. Hageman. 1969. Varitetal effects in soybean photosynthesis and photorespiration. Crop Sci. 9:323-327. Dai, J. L., Y. G. Zhu, M. Zhang, and Y. Z. Huang. 2004. Selecting iodine Enriched vegetables and the residual effect of iodate application to soil. Biol. Trace Elem. Res. 101:265-276. Delong, G. R., P. W. Leslie, and S. H. Wang. 1997. Effect on infant mortality of iodination of irrigation water in a severely iodine-deficient area of China. Lancet 350: 771-773. Demmig-Adams, B., W. W. Adams, D. H. Barker, B. A. Logan, D. R. Bowling, and A. S. Verhoeven. 1996. Using chlorophyⅡ fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Plant Physiol. 98:253-264. Demmig, B. and K.Winter. 1988. Relationship between thylakoid electron transport and photosynthetic CO2 uptake in leaves of three miaze(Zeamays L.) hybrids. Photosynth. Res. 58:245-257. De Souza, M. P., E. A. H. Pilon-Smits, C. M. Lytle, S. Hwang, J. Tai, T. S. U. Honma, L. Yeh, and N. Terry. 1998. Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol. 117:1487-1494. Dey, P. M. and J. B. Harborne. 1997. Plant biochemistry. Academic Press, Inc. p. 281-285. Duncan, W. G.. 1984. A theory to explain the relationship between corn population and grain yield. Crop Sci. 24: 1141-1145. Donner, S. D. and J. A. Kucharik. 2003. Evaluating the impacts of land management and climate variability on crop production and nitrate export across the upper Mississippi Basin. Global Biogeochem. Cycles 17: 1085. EC (European Commission). 2002. Commission Regulation (EC) No 563/2002 of 2 April 2002 amending Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs. Official J. Eur. Commun. 86:5-6. Elrashidi, M. A., D. C. Adriano, S. M. Workman, and W. L. Lindsay. 1987. Chemical-equilibria of seleniumin soils – a theoretical development. Soil Sci. 144:141-152. Fanasca, S., G. Colla, and G. Maiani. 2006. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agri. Food Chem. 54:4319-4325. Fallovo, C., Y. Rouphael, and E. Rea. 2009. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L . var . acephala in floating raft culture. J. Sci. Food Agri. 89:1682-1689. Fageria, N. K., V. C. Baligar, and Y. C. Li. 2008. The role of nutrient efficient plants in improving crop yields in the twenty first century. J. Plant Nutr. 31: 1121-1157. Fiehn, O. 2006. Metabolite profiling in Arabidopsis. In: Salinas J, Sanchez-Serrano J. J. (eds) Arabidopsis protocols, 2nd edn. Methods in molecular biology series. Humana Press, Totowa, NJ, p. 439-447. Fields, C, M. Dourson, and J. Borak. 2005. Iodine deficient vegetarians: a hypothetical perchlorate-susceptible population? Reg. Toxicol. Pharmacol. 42:37-46. Fordyce, F. M. 2005. Selenium deficiency and toxicity in the environment. (Selinus, O. et al., eds)In Essentials of Medical Geology p. 373-415. Foyn, E. 1951. Nitrogen determinations in sea-water. FiskDir. Skr., Ser. Havundersok., Bd. 9(14):1-7. Frantz, J. M. and B. Bugbee. 2005. Acclimation of plant populations to shade: photosynthesis, respiration, and carbon use efficiency. J. Am. Soc. Hortic. Sci. 130(6):918–927. Frechilla, S., B. Lasa, M. Aleu, N. Juanarena, C. Lamsfus, and P. M. Aparicio-Tejo. 2002. Short-term ammonium supply stimulates glutamate dehydrogenase activity and alternative pathway respiration in roots of pea plants. J. Plant Physiol. 159:811-818. Frink, C. R., P. E. Waggoner, and J. H. Ausubel. 1999. Nitrogen fertilizer: Retrospect and prospect. Proceeding of the National Academy of Science of the United States of America 96: 1175-1180. Fu, W., P. Li, and Y. Wu. 2012. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci. Hortic. 135:45-51. Fuge, R. and C. C. Johnson. 1986. The geochemistry of iodine – a review. Environ.l Geochem. Health 8: 31-54. Galeas, M. L., L. H. Zhang, J. L. Freeman, M. Wegner, and E. A. H. Pilon-Smits. 2007. Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol. 173:517-525. Genty, B., J. M. Briantais, and N. R. Baker. 1989 . The relationship between the quantum yield of photosunthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta. 990:87- 92 . Gill, M. A. and H. M. Reisenauer. 1993. Nature and characterization of ammonium effects on wheat and tomato. J. Agron. 85: 874-879. Gillham, D. J. and A. D. Dodge. 1986. Hydrogen peroxide saveging systems within pea chloroplasts : A quantitative study. Planta 167:246-251. Givnish, T. J. 1988. Adaptation to sun and shade: a whole-plant perspective. Aust. J. Plant Physiol. 15:63-92. Griess, P. 1879. Bemerkungen zu der Abhandlung der H.N. Weselky und Benedikt Ueber einege Azoverbindungen. Ber. Dtsch. Chem. Ges. 12: 426-428. Goins, G. D., N. C. Yorio, M. M. Sanwo, and C. S. Brown. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot. 48:1407-1413. Gojon, A., R. Wakrim, L. Passama, and P. Robin. 1991. Regulation of NO3- assimilation by anion availability in excised soybean leaves. Plant Pyhisol. 96: 398-405. Hagin, J. and A. Lowengart. 1996. Fertigation for minimizing environmental pollution by fertilizers. Fertilizer Research 43: 5-7. Han, Q., E. Yamaguchi, N. Odaka, and Y. Kakubari. 1999. Photosynthetic induction responses to variable light under field conditions in three species grown in the gap and understory of a Fagus crenata forest. Tree Physiol. 19:625-634. Hartikainen, H. and T. L. Xue. 1999. The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. J. Environ. Quality 28 (4):1372-1375. Hartman, S. C., R. B. Beelman, and S. Simons. 2000. Calcium and selenium enrichment during cultivation imp roves the quality and shelf life of A garicus mush rooms. Science and cultivation of edible fungi. Proceedings of the 15th International Congress on the Science and Cultivation of Edible Fungi, Maastricht, Netherlands, 15-19 May, 2000. 499-505. Harrison, J., N. Brugiere, B. Philipson, S. Ferrario-Mery, T. Becker, A. Limami, and B. Hirel. 2000. Manipulating the pathway of ammonia assimilation through genetic engineering and breeding. Consequences of plant physiology and plant development. In:Martins-Louc¸a˜o MA, Lips SH (eds) Nitrogen in a sustainable ecosystem. Blackhuys Publishers, Leiden. p. 89-101. Havaux, M., K. P. Bonfils, C. Lutz, and K. K. Niyogi. 2000. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophylls cycle enzyme violaxanthin de-epoxidase. Plant Physiol. 124:273-284. He, J., C. W. Chee, and C. J. Goh. 1996. 'Photoinhibition' of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature. Plant Cell Env.. 19:1238-1248. Hernandez, L. E., A. M. Ramon, R. O. Carpena-Ruiz, and A. Garate. 1995. Evaluation of nitrate nutrition indexes in maize leaves: Metabolic nitrate, total nitrate content and nitrate reductase activity. J. Plant Nutri. 18: 869-887. Hirel, B., P. Bertin, I. Quiller´e, W. Bourdoncle, C. Attagnant, C. Dellay, A. Gouy, S. Cadiou, C. Retailliau, M. Falque, and A. Gallais. 2001. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology 125: 1258-1270. Hirel, B. and P. J. Lea. 2001. Ammonia assimilation. In: Lea PJ, Morot-Goudry JF (eds) Plant nitrogen. Springer, Heidelberg. p.79-99. Hoenecke, M. E., R. J. Bula, and T. W. Tibbits. 1992. Importance of 'Blue' photon levels for lettuce seedlings grown under red-light-emitting diodes. HortScience 27(5):427-430. Hogewoning, S. W., P. Douwstra, G. Trouwborst, W. V. Ieperen, and J. Harbinson. 2010. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J. Exp. Bot. 61:1267-1276. Hopper, J. and D. R. Parker. 1999. Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210:199-207. Huang, J., S. Wang, L. Yan, and Q. Zhong. 2010. Plant photosynthesis and its influence on removal efficiencies inconstructed wetlands. Ecol. Eng. 36: 1037-1043. Huber, S. C., J. L. Huber, W. H. Campbell, and M. G. Redinbaugh. 1992. Comparative studies of the light modulation of nitrate reductase and sucrose-phosphate synthase activities in spinach leaves. Plant Physiol. 100:706-712. Hwang, C. F., Y. Lin, T. D'Souza, and C. L. Cheng. 1997. Sequences necessary for nitrate- dependent transcription of Arabidopsis nitrate reductase genes. Plant Physiol. 113: 853- 862. Igarashi, D., H. Tsuchida, M. Miyako, and C. Oshumi. 2006. Glutamate: glioxylate aminotransferase modulates amino acid content during photorespiration. Plant Physiol 142:901–910. Ivashikina, N. V. and O. A. Sokolov. 1997. Regulation of nitrate uptake and distribution in maize seedlings by nitrate, nitrite, ammonium and glutamate. Plant Sci. 123:29-37. Jarillo, J. A., H. Gabrys, J. Capel, J. M. Alonso, J. R. Ecker, and A. R. Cashmore. 2001. Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952-954. Jenkins, D. and L. L. Medsker. 1964. Brucine method for determination of nitrate in ocean estuarine + fresh waters. Anal. Chem. 36:610-612. Johnson, C. F., C. S. Brown, R. M. Wheeler, J. C. Sager, D. K. Chapman , and G. F. Deitzer. 1996. Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings. Photochem. Photobiol. 63(2):238-242. Johnson, D. M., W. K. Smith, T. C. Vogelmann, and C. R. Brodersen. 2005. Leaf architecture and direction of incident light influence mesophyll fluorescence profiles. Amer. J. Bot. 92:1425- 1431. Kapolna, E. and P. Fodor. 2006. Speciation analysis of selenium enriched green onions (Allium fistulosum) by HPLC-ICP-MS. Microchem. J. 84:56-62. Kapolna, E., S. Monika, J. A. Caruso, and F. Péter. 2007. Selenium speciation studies in Se-enriched chives (Allium schoenoprasum) by HPLC-ICP-MS. Food Chem. 101:1398-1406. Kahakachchi, C. 2004. Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and inselenized yeast. J. Chromatogr. 1054:303-312. Kamh, M., F. Wiesler, A. Ulas and W. J. Horst. 2005. Root growth and N-uptake activity of oilseed rape (Brassica napus L.) cultivars differing in nitrogen efficiency. J. Plant Nutr. Soil Sci. 168: 130-137. Karaivazonglou, N. A., D. K. Papakosta, and S. Divanidis. 2005. Effect of chloride in irrigation water and from of nitrogen fertilizer of Virginia (flue-cured) tobcco. Field Crop Res. 92: 61-74. Kitao, M., T. T. Lei, T. Koike, H. Tobita, and Y. Maruyama. 2006. Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant Cell Env. 23: 81-89. Klepper, B., V. D. Browing, and H. M. Taylor. 1971. Trunk diameter in relation to plant water status. Plant Physiol. 48:683-685. Kodama, S., Y. Takahashi, K. Okumura, and T. Uruga. 2006. Speciation of iodine in solid environmental samples by iodine K-edge XANES: application to soils and ferromanganese oxides. Sci. Environ. 363:275-284. Kosegarten, H., F. Grolig, J. Wieneke, G. Wilson, and B. Hoffmann. 1997. Differential ammonia-elicited changes of cytosolic pH in root hair cells of rice and maize as monitored by 2[prime], 7[prime] -bis-(2-carboxyethyl) -5 (and -6) -carboxyfluorescein—fluorescence ratio. Plant Physiology 113: 451-461. Krall, J. P. and G. E. Edwards. 1992. Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum 86:180- 187. Kryukov, G. V., S. Castellano, S. V. Novoselov, A. V. Lobanov, O. Zehtab, R. Guigó, and V. N. Gladyshev. 2003. Characterization of mammalian selenoproteomes. Science 300:1439-1443. Laloi, C., K. Apel, and A. Danon. 2004. Reactive oxygen signalling: the latest news. Curr. Opin. Plant Biol. 7:323-328. Langmuir, D. and R. L. Jacobson. 1970. Specific-ion electrode determination of nitrate in some freshwater and sewage effluents. Environ. Sci. Tech. 4: 834-835. Lambers, H., F. S. ChapinIII, and T. L Pons. 1998. Plant physiologicalecology. Springer -Verlag. New York, pp. 540. Lea, P. J. and R. A. Azevedo. 2006. Nitrogen use efficiency. 1. Uptake of nitrogen from the soil. Ann. Applied Biol. 149:243-247. Lejay L, J. Wirth, M. Pervent, J. M. Cross, P. Tillard, and A. Gojon. 2008. Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. Plant Physiology 146:2036-2053. Leap, J. and G. Fordeb. 1994. The use of mutants and transgenic plants to study amino acid metabolism. Plant Cell Environ. 17(5):541-556. Lefsrud, M. G., A. D. Kopsell, and E. S. Carl. 2008. Irradiance from Distinct Wavelength Light-emitting Diodes Affect Secondary Metabolites in Kale. HortScience 43(7) : 2243-2244. Li, X. P., O. Björkman, C. Shih, A. R. Grossman, M. Rosenquist, S. Jansson, and K. K. Niyogi. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391-395. Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Env. Exp. Bot. 67(1) :59-64. Li, H. F., P. M. Steve, and F. J. Zhao. 2008. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 178:92-102. Li, S. W., L. Xuea, S. Xub, H. Fengb, and L. An. 2009. Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ. Exp. Bot. 65:63-71. Lin, M. T., R. N. Campbell, P. R. Smith, and J. H. M. Temmink. 2013. Lettuce big-vein virus transmission by single-sporangium isolates of Olpidium brassicae. Phytopathology 60(11) :1630-1634 Lillo, C. 2004. Light regulation of nitrate uptake, assimilation and metabolism. J. Biol. Rhythms. 19(3): 280-286. Lillo, C. and K. J. Appenroth. 2001. Light regulation of nitrate reductase in higher plants: Which photoreceptors are involved? Plant Biol. 3: 455-465. Liu, L., and W. Q. Wang. 2001. Study on testing method for nitrate content in vegetables. Beijing Agri. Sci. (2):35-37. Lu, J. and A. Holmgren. 2009. Selenoproteins. J. Biol. Chem. 284:723-727. Lyons, G. H., Y. Genc, K. Soole, J. C. R. Stangoulis, F. Liu, and R. D. Graham. 2009. Selenium increases seed production in Brassica. Plant Soil 318:73-80. Lyons, G. H., J. C. R. Stangoulis, and R. D. Graham. 2004. Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the HarvestPlus program. Nutri. Rev. 62:247-252. Mackowiak C. L. and P. R. Grossl. 1999. Iodate and iodide effects on iodine uptake and partitioning in rice (Oryza sativa L.) grown in solution culture. Plant and Soil 212: 135-143. Martignon, G., A. Venezia and F. Malorgio. 1994. Nitate accumulation in celery as affected by growing system and N content in the nutrient solution. Acta Hort. 361:583-589. Marschner, H. 2002. Mineral Nutrition of Higher Plants. Academic:Press London. Martinac V. and J. Borosic. 1986. The effect of plant density on the lettuce yields growing in the glasshouse. Acta Hort. 176: 125-131. Marín, A., J. S. Rubio, and V. Martínez. 2009. Antioxidant compounds in green and red peppers as affected by irrigation frequency , salinity and nutrient solution composition . J. Sci. Food Agri. 89:1352-1359. Matrinez, V. and A. Cerda. 1989. Nitrate reductase activity in tomato and cucumber leaves as influenced by NaCl and N source. J. Plant Nutri. 12:1335-1350. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd Ed. Academic, London. pp. 889. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51: 659-668. Maynard, D. N. and A. V. Bark. 1971. Critical nitrate level for leaf lettuce, radish, and spinach plants. Commun. Soil Sci. Plant Anal. 2:461-470. Mccall, D. and J. Willumsen. 1998. Effects of nitrate, ammonium and chloride application on the yield and nitrate content of soil-grown lettuce. J. Horti. Sci. Bio. 73 (5): 698-703. Mengel, K. and D. J. Pilbean. 1992. Proceedings of the phytochemical society of Europe 33: Nitrogen Metabolism of Plants. Oxford Scirnce Publications. New York. p.329-334. Mengel, K. and E. A. Kirkby. 1982. Principles of Plant Nutrition. 7. International Institute Potash. Mensinga, T. T., G. J. A. Speijers, and J. Meulenbelt. 2003. Health implications of exposure to environmental nitrogenous compounds. Toxicol Rev 22: 41-51. Miller, C. H., R. E. McCollum, and S. Claimon. 1979. Relationships between growth of bell peppers and nutrient accumulation during ontogeny in field environments. J. Amer. Soc. Hort. Sci. 104: 852-857. Miller, A. J. and S. J. Smith. 1996. Nitrate transport and compartmentation in cereal root cells. J. Exp. Bot. 47: 843-854. Miller, J. A. and M. D. Cramer. 2004. Root and nitrogen acquisition and assimilation. Plant Soil 274:1-36. Morris, A. W. and J. P. Riley. 1963. The determination of nitrate in sea water. Anal. Chim. Acta. 29:272-279. Mullin, J. B. and J. P. Riley. 1955. The spectrophotometric determination of nitrate in natural waters, with particular reference to sea-water. Anal. Chim. Acta 12:464-480. Müller, P., X. P. Li, and K. K. Niyogi. 2001. Non-photochemical quenching. A response to excess light energy. Plant physiol. 125:1558-1566. Mynet, A. and R. L. Wain. 1973. Herbicidal action for iodine: effect on chlorophyll content and photosynthesis in dwarf bean Phaseolus vulgaris. Weed Res. 13:101-109. Nakamura, T., M. Osaki, and T. Shinano. 1997. Difference in system of current photosynthesized carbon distribution to carbon and nitrogen compounds between rice and soybean. Soil Sci. Plant Nutri. 43(4):777-788. Niu, J., F. Chen, M. Mi , C. Li, and F. Zhang. 2007. Transpiration and nitrogen uptake and flow in two maize (Zea mays L.) inbred lines as affected by nitrogen supply. Ann. Bot. 99:153-160. Nyberg, S. 1991. Multiple use of plants: studies on selenium incorporation in some agricultural species for the production of organic selenium compounds. Plant Foods for Human Nutrition 41 (1):69-88. Ohashi, K. K., M. Takase, N. Kon, K. Fujiwara, and K. Kurata. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatauna. Environ. Control Biol.45:189-198. Oliveira, I. C. and G. M. Coruzzi. 1999. Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in Arabidopsis. Plant Physiol. 121: 301-309. Okamoto, K., T. Yanagi, and S. Kondo. 1997. Growth andmorphogenesis of lettuce seedlings raised under different combinations of red and blue light. Acta Horti. 435:149157. Pannala, A. S., A. R. Mani, J. P. E. Spencer, V. Skinner, K. R Bruckdorfer, K.P. Moore, and C.A. Rice-Evans. 2003. The effect of dietary nitrate on salivary, placma, and urinary nitrate metadolism in humans. Free Rad. Biol. Med. 34: 576-584. Pérez-Torres, E., L. A. Bravoa, L. J. Corcueraa, and G. N. Johnson. 2007. Is electron transport to oxygen an important mechanism in photoprotection? Contrasting responses from atarctic vascular plants. Physiol. Plant. 130:185-194. Pezzaro, B., F. M. Alorgio, and P. Tonutti. 1999. Effects of selenium uptake by tomato plants on senescence, fruit ripening and ethylene evolution. Biology and biotechnology of the plant hormone ethylene II. Kluwer Academic Publishers, Dordrecht, Netherlands. Pilon-Smits, E. A. H., F. Q. Colin, T. Wiebke, M. Mario, and S. Michela. 2009. Physiological functions of beneficial elements. Curr. Opin. Plant Biol. 12:267-274. Poggi, V., P. G. Pifferi, and A. Bordoni. 1999. Plant foods enriched with selenium: the potato. Industrie Alimentari 38 (385):1107-1112. Potzl, L. and R. Reiter. 1960. Eine einfache Methode zur Bestimmung von NitratIonen im atmospharischen Niederschlag und in Aerosol-Kondensaten mit Anwendung aufProbleme der Luftelektrizitat wahrend Niederschlagen. Z. Aerosol. Forsch. u. -Ther., Bd. 8:252-264. Prasad, S. and A. A. Chetty. 2008. Nitrate-N determination in leafy vegetables: study of the effects of cooking and freezing. Food Chem. 106:772-780. Raven, J. A. 1985. Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol. 101: 25-77. Rayman, M. P. 2002. The argument for increasing selenium intake. Proc. Nutr. Soc. 61:203-215. Rayman, M. P. 2008. Food-chain selenium and human health: emphasis on intake. Br. J. Nutr. 100:254-268. Rayman, M. P., H. G. Infante, and M. Sargen. 2008. Food-chain selenium and human health: spotlight on speciation. Br. J. Nutr. 100:238-253. Reddy, K. S. and R. C. Menary. 1990. Nitrate reductase and nitrate accumulation in relation to nitrate toxicity in Boronia megastigma. Physiol. Plant. 78:430-434. Reid, M. E., A. J. Duffield-Lillico, E. Slate, N. Natarajan, B. Turnbull, E, Jacobs, G. F. Combs, D. S. Alberts, L. C. Clark, and J. R. Marshall. 2008. The nutritional prevention of cancer: 400 mcg per day selenium treatment. Nutr. Cancer 60:155-163. Reinink, K., M. Van Nes, and R. Groenwold. 1994. Genetic variation for nitrate content between of endive (Cichorium endiviae L.). Euphytica 75:41-48. Ripley, B. S., M. E.Gilbert, D. G. Ibrahim, and C. P. Osborne.2007. Drought constraints on C4 photosynthesis: Stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J. Exp. Bot. 58:1351-1363. Roberts, S. K. 2006. Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytologist. 169: 647-666. Rosales, M. A., J. M. Ruiz, J. Herna´ndez, T. Soriano, N. Castilla, and L. Romero. 2006. Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. J. Sci. Food Agr. 86:1545-1551. Ruiz, J. M., R. M. Rivero, P. C. Garcia, M. Baghour, and L. Romero. 1999. Role of CaCl2 in nitrate assimilation in leaves and roots of tobacco plant (Nicotiana tabacum L.). Plant Sci. 141:107-115. Saebo, A., T. Krekling, and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantets in vitro. Plant Cell Tiss. Org. Cult. 41:177-185. Samuelson, M. E., W. H. Campbell, and C. M. Larsson. 1995. The influence of cytokinins in nitrate regulation of nitrate reductase activity and expression in barley. Physiol. Plant. 93: 533-539. Samuolienė, G., A. Urbonavičiūtė, P. Duchovskis, Z. Bliznikas, P. Vitta, and A. Zukauskas. 2009. Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. HortSci. 44:1857-1860. Samuolienė, G., A. Brazaitytė, R. Sirtautas, A. Noičkovas, and P. Duchovskis. 2011. Supplementary red-LED lighting affects phytochemicals and nitrate of baby leaf lettuce. J. Food Agric. Enciron. 9:271-274. Santamaria, P. 2006. Nitrate in vegetables: toxicity, content, intake and EC regulation. J. Sci. Food Agric. 86: 10-17. Sattelmacher, B., W. J. Horst, and H. C. Becker. 1994. Factors that contribute to genetic variation for nutrient efficiency of crop plants. J. Plant Nutrition Soil Sci. 157: 215-224. Saparamadu, J. S., R. D. Wijesekera, and H. D. Gunawardhana. 2010. A low cost nutrient formulation with a buffer for simplified hydroponics systems . J. Horti. Forestry 2(5):99-103. Savvas, D., V. Karagianni, and A. Kotsiras A. 2003. Interactions between ammonium and pH of the nutrient solution supplied to gerbera ( Gerbera j amesonii) grown in pumice. Plant and Soil 254:393-402. Scaife, A. and K. L. Stevens. 1983. Monitoring sap nitrate in vegetable crops: comparison of test strips with electrode methods, and effects of time of day and leaf position. Commun Soil Sci. Plant Anal. 14(9): 761-771. Sharifi, M., B. J. Zebarth, D. L. Burton, V. Rodd, and C.A. Grant. 2011. Long-term effects of semisolid beef manure application to forage grass on soil mineralizable nitrogen. Soil Sci. Soc. Am. J. 75: 649-658. Sharat, D. G., P. A. Vanden, V. J. Feron, and C. Janzowsky. 1994. Nitrate, nitrite and N-nitroso compounds. Euro. J. Pharm. Envir. Toxi. and Pharm. Sec. 292:1-38. Sihag, R. K., S. Guha-Mukherjee, and S. K. Sopory. 1979. Effect of ammonium, sucrose and light on the regulation of nitrate reductase level in Pisum sativum. Physiol. Plant. 45:281-287. Sivasankar, S. and A. Oaks. 1995. Regulation of nitrate reductase during early seedling growth. Plant Physiol. 107:1225-1231. Siddiqi, M. Y., B. Malhotra, X. Min, and A. D. M. Glass. 2002. Effect of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop. J. Plant Nutri. Soil Sci. 165:191-197. Small, H., T. S. Stevens, and W. C. Bauman. 1975. Novel ion-exchange chromatographic method using conductimetric detection. Anal. Chem. 47:1801-1809. Smith, A. M. and M. Stitt. 2007. Coordination of carbon supply and plant growth. Plant Cell Environ. 30:1126-1149. Speijers, G. J. A. 1996. Nitrate, in Toxicological evaluation of certain food additives and contaminants in food. World Health Organization, Food Additives Series 35, Geneva, p 325-360. Stitt, M., B. Herzog, and H. W. Heldt. 1981. Control of photosynthetic sucrose synthesis by fructose 2, 6-bisphosphate. I. Coordination of CO2 fixation and sucrose synthesis. Plant Physiol. 75:548-553. Stadlober M., M. Sager, and K. J. Irgolic. 2001. Effects of selenate supplemented fertilisation on the selenium level of cereals-identification and quantification of selenium compounds by HPLC-ICP-MS. Food Chem. 73:357-366. Steingrover, E., P. Ratering., and J. Siesling. 1986. Daily changes in uptake,reduction and storage of nitrate in spinach grown at low light intensity. Physiol. Plant. 66:550-556. Stephen, R. C., D. J. Saville, and J. H. Watk inson. 1989. The effects of sodium selenate applications on growth and selenium concentration in wheat. New Zealand J. Crop Horti. Sci. 17 (3):229-237. Suthrtlanf, R. A. and L. R. Benjamin. 1987. A new model relating crop yield and plant arrangement. Ann. Bot. 59: 399-411. Taiz L. and E. Zeiger. 2002. Plant Physiology. The Benjamin/Cummings Publishing Company, Inc. p.302-307. Taiz, L., and E. Zeiger. 2010. Plant Physiology. 5th Ed. Sinauer Associates, Sunderland. Terry, N., A. M. Zayed, M. P. de Souza, and A. S. Tarun. 2000. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:401-432. Tischner, R. 2000. Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 23:1005-1024. Torshin, S. P., B. A. Yagodin, and T. M. U delnova. 1995. Accumulation of selenium by vegetable crops and spring rape with selenium used as a fertilizer. Agrokhimiya 9:40-47. Torshin, S. P., B. A. Yagodin, and T. M. U delnova. 1996. Effect of Se, Zn and Mo trace elements at different levels of macro elements in the soil, and the effect of S on the Se content in spring wheat and rape plants. Agrokhimiya 5 : 54-64. Ullrich, W. R. 1992. Transport of nitrate and ammonium through plant membranes. In: Nitrogen Metabolism of Plants. Oxford university press. Oxford. p.121-137. Umaly, R. C. and L. W. Poel. 1971. Effect of iodine in various formulations in growth of barley and pea plants in nutrient solution culture. Ann. Bot. 35:127-131. Van Iersel, M. W. 2003. Carbon use efficiency depends on growth respiration, maintenance respiration, and relative growth rate. A case study with lettuce. Plant Cell Environ. 26:1441-1449. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecolog. Appli. 7: 737-750. Wang, Z., F. Song, and Z. Xu. 2011. Effects of red and blue light intensity on growth and quality of lettuce. (in Chinese with English abstract) China Veget. 16:44-49. Wang, Y. J., Z. Z. Wen, J. Y. Cai, Z. Y. Tan, Y. P. Wang, Y. Q. Liu, and W. Liu. 2011. Study on the photosynthesis characteristics of four species of Paphiopedilum. Modern Agric. Sci. Technol. 20:200-203. Wang, Z. J. and Gao, Y. X. 2001. Biogeochemical cycling of selenium in Chinese environments. Appl. Geochem. 16:1345-1351. Wallace, K., T. Kelsey, A. Schned, J. S. Morris, A. S. Andrew, and M. R. Karagas. 2009. Selenium and risk of bladder cancer: a population-based case-control study. Cancer Prev. Res. 2:70-73. Walters, C. L. 1991. Nitrate and nitrite in food . Eds in Hill, M. J. Nitrate and Nitrite in Food and Water. Ellis Horwood. p. 93-112. Walker, R. 1990. Nitrates, nitrites and N-nitrosocompounds: a review of the occurrence in food and diet and the toxicological implications. Food Addit Contam 7:717-768. Wedin, D. A. and D. Tilman. 1996. Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science 274: 1720-1723. Welch, R. M. and R. D. Graham. 2005. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55:353-364. White P. J. and M. R. Broadley. 2001. Biofortifying crops with essential mineral elements. Trends Plant Sci. 10:586-593. White, P. J., H. C. Bowen, P. Parmaguru , M. Fritz, W. P. Spracklen, R. E. Spiby, M. C. Meacham, A. Mead, M. Harriman, L. J. Trueman, B. M. Smith, B. Thomas, and M. R. Broadley. 2004. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 55:1927-1937. White, P. J., H. C. Bowen, B. Marshall, and M. R. Broadley. 2007. Extraordinarily high leaf selenium to sulfur ratios define 'Se-accumulator' plants. Ann. Bot. 100:111-118. White, P. J. and M. R. Broadley. 2009. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182:49-84. Whitehead D. C. 1975. Uptake and distibution of iodine in grass and clover plants grown in solution culture. J. Sci. Food Agric. 24:43-50. Wilcox, G. E., J. R. Magalhaes, and F. L. I. M. Silva. 1985. Ammonium and nitrate concentration as factors in tomato growth and nutrient uptake. J. Plant Nutri. 8:989-998. Wingler, A., P. J. Lea, W. P. Quick, and R. C. Leegood. 2000. Photorespiration: metabolic pathways and their role in stress protection. Philos. Trans R. Soc. Lond. 355:1517-1529. Wood, E. D., F. A. J. Armstrong, and F. A. Richards. 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. Mar. Biol. Ass. 47:23-31. Ximenez-Embun, P., I. Alonso, Y. Madrid-Albarran, and C. Camara. 2004. Establishment of selenium uptake and species distribution in lupine, Indian mustard and sunflower plants. J. Agric. Food Chem. 52:832-838. Yan, X. L., P. Wu, H. Q. Ling, G. H. Xu, F. S. Xu, and Q. F. Zhang. 2006. Plant nutriomics in China: An overview. Ann. Bot. 98:473-482. Yau, S. K., and N. Thurling. 1987. Variation in nitrogen response among spring rape (Brassica napus) cultivars and its relationship to nitrogen uptake and utilization. Field Crops Research 16:139-155. Yin, Y. X. 1993. An investigation of nitrate content of vegetables is Yin Chuan and of methods of contamination evaluation and prevention. Ningxia J. Agro-Forestry Sci. Technol. 1:40-43. Ylaranta, T. 1990. Effects of liming and the addition of sulphate and phosphate on the selenium content of Italian rye grass. Ann. Agri. Fenni. 29 (2): 141-149. Yorio, N. C., G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36: 380-383. Yuita, K. 1992. Dynamics of iodine, bromine, and chlorine in soil. II. Chemical forms of iodine in soil solutions. Soil Sci. Plant Nutri. 38: 281-287. Zelitch, I. 1966. Increased rate of net photosynthetic carbon dioxide uptake caused by the inhibition of glycolate oxidase. Plant Physiol. 41:1623-1625. Zelitch, I. 1975. Pathways of carbon fixation in green plants. Annu. Rev. Biochem. 44:1123-145. Zebarth, B.J., C.F. Drury, N. Tremblay, and A.N. Cambouris. 2009. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Can. J. Soil Sci. 89:113-132. Zhai, S. W., J. X Liu, and Y. Ma. 2003. Relation between milk urea content and nitrogen excretion from lactating cows. Acta Agric. Scand. Sect. Ani. Sci. 55:113-115. Zhang, M. F., Z. L. Li, K. S. Chen, Q. Q. Qian, and S. L. Zhang. 2003. The relationship between sugar accumulation and enzymes related to sucrose metabolism in developing fruits of muskmelon. J. Plant Physiol. Mol. Biol. 29: 455-462. Zhang, Z. W., B. Y. Zhang, H. F. Tong, and L. Fang. 2010. Photosynthetic LCP and LSP of different grapevine cultivars. J. Northwest Forest. Univ. 25:24-29. Zhou, Q. 1992. A study on the effect of meteorological factors on physiological function of AF reagent. Agri. Meteorol. 13(4):19-21. Zhou, Q. 1995. Relationship between the regulation of photorespiration and increase of crop yield. Res. Agi. Moder. 16(4):274-276. Zlatko, S. and Z. Rengel. 2006. Canola cultivars differ in nitrogen utilization efficiency at vegetative stage. Field Crops Research 97:221-226. Zrenner, R., P. K. Krause, P. Aple, and U. Sonnewald. 1996. Reduction of the cytosolic fructose-1, 6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J. 9:671-681. Zuo, Y. M., H. J. Chen, Z. F. Yang, Q. Q. Deng, and J. Tang. 2010. The diurnal variation of light parameters and the main impact factors of Cassava in South China. Chinese Agric. Sci. Bull. 26:371-375.
摘要: Pak-choi belongs to the Brassica campestris ssp. Chinensis family, and is one of the main crops of leafy vegetables in Taiwan. Pak-choi has a high nutritional value and is rich in food fiber, crude fiber, vitamin A, vitamin C, potassium, calcium, and iron. The characteristics of Pak-choi include a variety of cultivars, a short growth period, and easy accumulation of nitrate ions. Nitrogen fertilizer directly affects the yield and quality of Pak-choi, and therefore nitrogen deficiency will inhibit plant growth and cause a lack of chlorophyll and leaf-yellowing. However, excessive application of nitrogen fertilizer causes accumulation of nitrate in plants, and consuming these crops can be harmful to human health. In addition, it also causes environmental pollution and other issues, and therefore this study was conducted to establish the optimum cultivation and management model for a low nitrate content in Pak-choi. The optimal growth temperature varies for different cultivars, which might lead to diverse nitrogen use efficiency (NUE) values among different cultivars and therefore affect the nitrate content of Pak-choi. By screening for low nitrate accumulation cultivars of common market cultivars and determining the appropriate periods of harvest in spring and summer, this study aimed to identify cultivars with a higher NUE, which reduces nitrogen fertilizer utilization. The results showed that the nitrate contents of high-NUE cultivars such as 'Fengzhen' and 'Sakata F1' were significantly lower than those of other cultivars. However, when these two cultivars were grown in a low-nitrogen environment, the plants still maintained high activities of nitrate reductase and glutamine synthetase, and their amino acid and protein contents were lower than the rest of the cultivars by 6-9% and 2-6%, respectively. As light directly affects the nitrogen cycle, to produce Pak-choi with a low nitrate content, the effects of light intensity and quality on plant growth require further study in order to identify the optimal light conditions for Pak-choi growth. Therefore, this study investigated the changes in nitrate accumulation in plants grown under different light intensities and explored various physiological indexes in order to monitor plant growth as well as identify the best light intensity. The results regarding the chlorophyll fluorescence parameters and plant physiological responses showed that ETR, qp, ΦPSII and NPQ could be effective indexes, as their values were found to be associated with the nitrate content, activities of NR and GS, and contents of amino acid and protein. The addition of artificial light (at a red:blue ratio of 1:1) increased the photosynthesis rate by 10-14% and the total soluble sugar content by 33-36%, while the nitrate content was decreased by12-14%. In addition, production was increased by 14-16% and the crop quality was improved. Currently, common nutrient solutions are used when growing Pak-choi using hydroponics systems, and a special nutrient solution for Pak-choi has not been developed. As different types of crops might have different nutrient requirements, identifying suitable element concentrations and an optimum nitrate/ammonia ratio to improve crop production and quality are necessary. The results showed that when the nitrate/ammonia ratio was increased to 7:1 and the concentrations of phosphorus, potassium, calcium and magnesium in the nutrient solution were reduced, the adjusted formula had a stable pH and stable EC values and was suitable for Pak-choi growth. The fresh and dry weights and leaf area increased by 12-16%; however, the content of nitrate in the plants reduced by 8-12% as compared with the control. Further analysis of the elements composition demonstrated that the new formula had sufficient nutrient elements to support plant growth. The results showed that the addition of selenium to the hydroponic nutrient solution improved the biofortification efficiency. Selenium addition reduced the nitrate accumulation by improving the NUE in Pak-choi, and increased the nutritional value, such as represented by the antioxidant activity. In addition, when treated with 20 μM selenium, the activities of nitrogen cycle enzymes such as NR, GS and GOGAT were increased, which led to promotion of protein synthesis. The contents of total ammonia, free amino acid and soluble protein were significantly increased by 10.4-13.5%, 18.0-24.6%, and 16.9-32.8%, respectively; however, the nitrate content was decreased by 6.1-16.4%. The activities of POD and GPX were significantly increased, and the malondialdehyde and total peroxide levels were decreased when the Pak-choi plants were treated with 20 μM selenium. The addition of iodine to the nutrient solution improved the efficiency of photorespiration and inhibited the rate of carbon dioxide release during the summer with a high light intensity. When treated with 40 μM iodine, the results also showed that the fresh and dry weights were significantly increased by 2.7-10.8%, the nitrate content was decreased by 10.0-17.7%, the photosynthesis rate was increased by 7.2-17.4%, and the fructose and glucose accumulations were increased by 40.7-59.7 and 13.8-18.4%, respectively. Furthermore, the activities of photorespiration enzymes including GO, GGAT, SGAT were increased by 14.9-27.5%, 123-161%, and 11.1-20.6%, respectively. The findings indicated that iodine treatment improved the efficiency of photorespiration, reduced the release of fixed carbon from the plant, and increased the release rate of ammonia to maintain a high yield and quality of Pak-choi.
小白菜為不結球白菜中之一種,是台灣葉菜類主要作物之一,其富含營養,具有栽培品種多、生育期短、易累積硝酸根離子等特色。氮肥的施用會直接影響小白菜之產量及品質,過量施用氮肥則會導致植體累積過多的硝酸根離子進而影響人體之健康,同時產生環境汙染等問題。本研究以建立低硝酸根離子小白菜之生產模式為目標。小白菜栽培品種繁多,有其生長適溫,硝酸根離子之累積量亦有差異,主要受其氮利用率不同所致,以市售常見之栽培品種於春夏二季進行試驗,篩選低硝酸根離子累積量之品種並確定其合適之採收期,篩選氮利用率較高之品種以減少氮肥之施用,試驗結果顯示氮利用率較高之'鳳珍'、'?田F1',其硝酸根離子含量顯著低於其他品種,於低氮栽培環境下硝酸還原酶(Nitrate reductase)及穀氨醯胺還原酶(Glutamine synthetase)維持較高之活性,其氨基酸、蛋白質較其餘三品種分別少減少6-9 %及2-6 %。 光會直接影響植物的氮循環系統,因此為生產低硝酸根離子殘留之小白菜,須了解其對於光強度、光質等各項特性以提供其合適之生長環境,調查小白菜於不同光強度下硝酸鹽累積量之改變,以確定合適之栽培光強度並建立生理指標,以葉綠素螢光進行試驗結果顯示參數ETR、qp、ΦPSII、NPQ均可作為有效參數,當其值受到光強度影響時,植株的硝酸鹽含量、硝酸還原酶(NR)、麩胺醯胺合成酶(GS)活性及氨基酸、蛋白質含量均隨之改變。利用人工光源進行栽培時,可適量添加3:5之紅藍光,能有效的增加光合作用速率10-14 %,提高總可溶性糖含量33-36 %並減少硝酸根離子含量12-14 %,提高產量14-16 %並改善品質。 目前在小白菜養液栽培上未有專門養液配方,不同作物對於養分的需求不完全相同,針對小白菜生長所需之元素含量,適當的調整養液中各元素及硝酸態氮/氨態氮之比例,將有助於提高小白菜養液栽培之產量及品質。試驗結果顯示將養液中硝酸態氮/氨態氮之比例提高至7:1並增加磷含量及減少鉀、鈣、鎂之含量,調整後之養液配方pH及EC值穩定並適合小白菜栽培,植株鮮乾重及葉面積均較對照組顯著增加12-16 %,其硝酸根離子含量則顯著低於對照組8-12 %,分析植體及養液中各元素含量顯示此配方可提供小白菜栽培足量之營養元素。 硒於植物氮代謝中可影響硝酸還原酶之活性,利用生物營養強化(Biofortification)之技術,添加微量元素硒以增進小白菜的氮利用率以降低其硝酸鹽之累積量,同時增加其抗氧化能力等附加營養價值,試驗結果顯示施用20 μM的硒於四品種小白菜可以顯著的增加氮循環酵素NR、GS及GOGAT之活性,其總氨含量、總游離氨基酸及總可溶性蛋白質發現分別顯著的增加10.4-13.5 %、18.0-24.6 %、16.9-32.8 %,同時植體內硝酸根離子的含量可減少6.1-16.4 %,並提高抗氧化酵素POD及GPX的活性,減少丙二醛及總過氧化物之產生。 添加微量元素碘以提高小白菜之光合作用能力並抑制其夏季高光強度下光呼吸旺盛而再次釋放之碳量,試驗結果顯示施用40 μM的碘於四品種小白菜可以顯著的增加鮮乾種2.7-10.8 %,並減少硝酸根離子含量10.0-17.7 %,其光合作用速率顯著的增加7.2-17.4 %,並有效地增加果糖及葡萄萄之累積達40.7-59.7及13.8-18.4 %,增加光呼吸酵素GO、GGAT、SGAT之活性達14.9-27.5 %、123-161 %、11.1-20.6 %,促進光呼吸之效率以減少碳的再釋放及氨離子的釋出率,使其於光逆境下能維持產量及品質。
URI: http://hdl.handle.net/11455/89179
其他識別: U0005-2207201511271800
文章公開時間: 2016-07-29
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.