Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89187
標題: LED、硒及硫酸鉀處理對水耕油菜生長及硝酸根離子含量之影響
Effects of LED、Se and potassium sulfate on the growth and nitrate content in rape (Brassica napus L.)
作者: Tzu-Yu Lin
林慈鈺
關鍵字: 油菜
光質
硝酸根離子
rape
light quality
nitrate
引用: 柒、參考文獻 王秀红。2006。微量元素硒與人體健康。微量元素與健康研究 23(1): 66-67。 王秀峰、張光星、伊東正。菠菜收穫前營養液中Cl -、SO4 2 -濃度對葉內NO 3 -含量 及生長的影響。植物營養與肥料學報 9: 558-562。 王淑珍、趙喜茹、王喜枝、王應君。2008。葉面噴施亞硒酸鈉對大蒜光合作用及產量品質的影響。中國農學通報 24(4): 294-297。 王鳳婷、艾希珍、劉金亮、徐坤範。2005。鉀對日光溫室黃瓜糖、維生素C、硝酸鹽及其相關酶活性的影響。植物營養與肥料學報 11(5): 682-687。 李登超、朱祝軍、徐志豪、錢瓊秋。2003。硒對小白菜生長和養分吸收的影響。植物營養與肥料學報 9(3): 353-358。 杜洪濤、劉世琦、蒲高斌。2005。光質對彩色甜椒幼苗生長及葉綠素螢光特性的影響。西北農業學報 14(1): 41-45。 尚慶茂、高麗紅、李式軍。1998。硒素營養對水培生菜的影響。中國農業大學學報 3(3): 67-71。 洪明谷。2012。人工光源對甘藍'和風'結球白菜'瑞喜'穴盤苗及水耕小白菜'台農一號'生長及品質之影響。中興大學園藝學系研究所碩士論文。93pp.。 柳勇、何江華、杜應瓊、夏運生、魏秀國、朱立安。2005。施氮、鉀和鉬對菠菜不同生長階段硝態氮積累影響研究初報。植物營養與肥料學報11(3): 363- 368。 夏弈明。2011。中國人體硒營養研究。回顧營養學年報33(4): 329-334。 高德錚。2012。臺灣發展蔬菜植物工廠之契機。台中區農業改良場一○一年專題討論專集。p. 119-122。 郭忠吉、陳惠美、陳秀珠。1990。精緻蔬菜生產與光之管理。精緻蔬菜產銷改進研討會專集。p. 81-89。 孫學成、胡承孝、譚啟玲、魏文學、王運華。2002。施用鉬肥對冬小麥游離氨基 酸、可溶性蛋白質和糖含量的影響。華中農業大學學報 21(1): 40-43。 張木、胡承孝、趙小虎、孫學成、譚啟玲。2013。鉬硒互作對小白菜產量及營養品質的影響。華中農業大學學報 32(3): 72-76。 康有德、馬溯軒、洪立、方祖達、黃涵、鄭燮、凌德麟、李哖、鄭正勇、張喜寧、許圳塗、王自存。2006。園藝概論。啟英文化事業有限公司。220pp.。 張雯,耿增超。2012。外源硒對蔬菜硒積累和產量品質影響的研究現狀。園藝學報 39(9): 1749-1756。 許謙信。2012。LED照明對植物生長及發育之影響。台中區農業改良場一○一年專題討論專集。pp. 234-246。 張鑫、唐璐璐、周濤發、李湘淩。2011。硒的化學特性、功用與創意農業發展研究。安徽農業通報 17(12): 58-60。 賀文愛、龍明華、白厚義、于文進。2003。蔬菜硝酸鹽積累機制研究的現狀與展望。科技與工作-專述專論 p. 30-33。 惠紅霞、許興、李守明。2004。鹽脅迫抑制枸杞光合作用的可能機理。生態學雜誌 23(1): 5-9。 楊其長。2014。植物工廠的發展策略。科技導報 32(10): 20-24。 賈奎壽、葉素芳。2002。微量元素硒與人體健康的研究。廣東微量元素科學 9(1): 4-6。 楊暹、關佩聰、陳玉娣。1994。氮鉀營養與花椰菜氮素代謝和產量的初步研究。華南農業大學學報 15(1): 85-90。 蒲高斌、劉世琦、劉磊。2005。不同光質對番茄幼苗生長和生理特性的影響。園藝學報 32(3): 420-425。 劉忠、王朝輝、李生秀。2005。菠菜葉片硝態氮還原對葉柄硝態氮含量的影響。 中國農業科學 38(11): 2277-2282。 劉忠 、王朝輝、李生秀。2006。硝態氮難以在菠菜葉柄中還原的原因初探。中國農業科學 39(11): 2294-2299 。 葛陽、侯桂革、高雨霖。2013。有機硒與人類健康。山東化工 42(7) : 47-50。 都韶婷、章永松、林咸永、王月、李剛、張英鵬。2007。蔬菜積累的硝酸鹽及其對人體健康的影響。中國農業科學 40(9): 2007-2014。 陳世銘、方煒、羅筱鳳、曹幸之、張耀乾、廖國基、顏炳郎、蔡兆胤。2011。台灣植物工廠現況與發展策略之分析。農業機械學刊 20(4): 95-105。 陳巍、羅金葵、尹曉明、賈莉君、張攀偉、沈其榮。2005。硝酸鹽在兩個小白菜 品種體內的分佈及調配。中國農業科學 38(11): 2277-2282。 趙越、魏自民、馬風鳴。2003。銨態氮對甜菜蔗糖合成酶和蔗糖磷酸合成酶的影響。中國醣料 3: 1-5。 董曉英、李式軍。2003。採前營養液處理對水培小白菜硝酸鹽積累的影響。植物營養與肥料學報 9(4): 447-451。 劉敏莉。2011。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報 21(1): 1-15。 劉曉英、焦學磊、徐志剛、楊楊。2013。紅藍LED光對葉用萵苣生長、營養品質和硝態氮含量的影響。南京農業大學學報 36(5): 139-143。 潘瑞熾。2008。植物生理學。高等教育出版社。315pp.。 蔡妙珍、劉鵬、徐根娣、顏順平。2008。鉬、錳營養對大豆碳氮代謝的影響。土壤學報 45(1): 180-183。 盧敏敏。2009。不同濃度硒對水培生菜品質的影響。安徽農業科學 37(7): 2930- 2931。 聶兆君、胡承孝、孫學成、譚啟玲、劉紅恩。2008。鉬對小白菜葉色、營養品質及硝酸鹽含量的影響。中國蔬菜 8: 7-10。 羅健、程東山、林東教、劉士哲。2005。不同收穫時期和控氮條件對水培小白菜硝酸鹽含量的影響。生態環境 14(4): 562-566。 山崎肯哉。1982。養液栽培全編。博友社。日本東京。 Apel, K., and H. Hirt. 2004. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Plant Biol. 55(3): 73-99. Benjamin, N. 2000. Nitrates in the human diet-good or bad. Ann. Zootech. 49(3): 207-216. Chen, X., W. Guo, X. Xuea, L. Wang, and X. Qiao. 2014. Growth and quality responses of 'Green Oak Leaf' lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Hort. 172: 168-175. Folta, K. M. 2004. Green light stimulates early stem elongation, antagonizing lightmediated growth inhibition. Plant Physiol. 135: 1407-1416. Frechilla, S., L. D. Talbott, R. A. Bogomolni, and E. Zeiger. 2000. Reversal of blue light-stimulated stomatal opening by green light. Plant Cell Physiol. 41(2): 171-176. Fu, W., P. Li, and Y. Wu. 2012. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Hort. 135:45-51. Germ, M., V. Stibilj, J. Osvald, and I. Kreft. 2007. Effects of selenium foliar application on chicory (Cichorium intybus L.). J. Agric. Food Chem. 55: 795-798. Goggin, D. E., Steadman, K. J., and S. B. Powles1. 2008. Green and blue light photoreceptors are involved in maintenance of dormancy in imbibed annual ryegrass (Lolium rigidum) seeds. New Phytol. 180: 81–89. Iacona, C. and R. Muleo. 2010. Light quality affects in vitro adventitious rooting and ex vitro performance of cherry rootstock 'Colt'. Scientia Hort. 125: 630-636. Johkan, M., K. Shoji., F. Goto., S. Hahida., and T. Yoshihara. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Env. Exp. Bot. 75: 128-133. Keiko, O., M. Takase, and N. Kon. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce,spinach and komatsuna. Environ. Control Biol. 45(3): 189-198. Kim, H., G. D. Gregory, R. M. Wheeler, and J. C. Sager. 2004. Stomatal conductance of lettuce grown under or exposed to different light qualities. Ann. Bot. 94: 691-697. Kurepin, L. V., R. J. N. Emery, R. P. Pharis, and D. M. Reid. 2007. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. Exp. Bot. 58: 2145-2157. Li, H., C. Tang, and Z. Xu. 2013 . The effects of different light qualities on rapeseed (Brassica napus L.) plantlet. Scientia Hort. 150: 117-124. Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Env. Exp. Bot. 67: 59-64. Liu, W. K. and Q. C. Yang. 2012. Effects of short-term treatment with various light intensities and hydroponic solutions on nitrate concentration of lettuce. Soil and Plant Science 62: 109-113. Malorgio, F., K. E. Diaz, A. Ferrante, A. Mensuali-Sodi, and B. Pezzarossa. 2009. Effects of selenium addition on minimally processed leafy vegetables grown in floating system. J. Sci. Food Agr. 89: 2243-2251. Matteo, F., M. M. Sourestani, E. Quattr, M. Schiavi, and A. Ferrante. 2012. Biofortification of spinach plants applying selenium in nutrient solution of floating system. Veg. Crops Res. Bul. 76: 127-136. Mechora, Š., V. Stibilj, T. Radešček, A. Gaberščik, and M. Germ. 2011. Impact of Se (VI) fertilization on Se concentration in different parts of red cabbage plants. Sci. Technol. 9(2): 357-361. Mengxi, L., X. Zhigang, Y. Yang, and F. Yijie. 2011. Effects of different spectral lights on Oncidium PLBs induction. Plant Cell Tissue Organ Cult. 106: 1-10. Munshi, C. B., F. Gerald, C. Jr, and I. Mondy. 1990. Effect of selenium on the nitrogenous constituents of the potato. Agric. Food Chem. 38(11): 2000-2002. Rı´os, J. J., B. Blasco, L. M. Cervilla, M. M. Rubio-Wilhelmi, M. A. Rosales, E. Sanchez-Rodriguez, L. Romero, and J. M. Ruiz. 2009. Nitrogen-Use efficiency in relation to different forms and application rates of Se in lettuce plants. J. Plant Growth Regul. 29: 164-170. Rı´os, J. J., M. A. Rosales, B. Blasco, L. M. Cervilla, L. Romero, and J. M. Ruiz. 2008. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Scientia Hort. 116: 248-255. Samuolienė, G., A. Brazaitytė, R. Sirtautas, A. Novičkovas, and P. Duchovskis. 2011. Supplementary red-LED lighting affects phytochemicals and nitrate of baby leaf lettuce. Science and Technology 9(3&4): 271-274. Sharma, S., A. Bansal, S. K. Dhillon, and K. S. Dhillon. 2010. Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.). Plant Soil 329: 339-348. Trouwborst, G., J. Oosterkamp, and S. W. Hogewoning. 2009. The responses of light interception, photosynthesis and fruit yield of cucumber to LED lighting within the canopy. Physiol. Plant. 138(3): 289-300. Wang, H., M. Gu, and J. Cui. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Scientia Hort. 96: 30-37. World Health Organization. 1996. Selenium. In: Trace elements in human nutrition and health. Geneva. p. 105-122. Zhang, T. and K. M. Folta. 2012. Green light signaling and adaptive response. Landes Biosci. 7(1): 1-4. Zhang, T., S. A. Maruhnich, and K. M. Folta. 2011. Green light induces shade avoidance symptoms. Plant Physiol. 157: 1528-1536.
摘要: Abstract In this experiment, we use rape cultivars 'Mimatsung', 'Fluke sweet', and 'Ali' to investigate the feasibility of cultivating low-nitrate hydroponic vegetables by regulating the artificial light and nutrient solution. We studied three different combinations of light quality, including 4W4BR, 6W2BR, and 8W, by adjusting the proportions of red and blue light-emitting diodes (LEDs). Control plants were cultivated under full-spectrum sunlight.The results showed that the nitrate reductase activities of 'Fluke sweet' and 'Ali' increased significantly under 4W4BR and 6W2BR treatment, and the values being 7.35, 6.72 and 16.22, 5.37 μM NO2-/hr/g FW, respectively. The higher the nitrate reductase activity, the lower the nitrate content in the plants, the values being 2713, 4123 mg/kg FW and 1118, 1345 mg/kg FW, respectively. In addition, the photosynthetic capacity, carbeohydrate contents and soluble protein contents of 'Mimatsung' and 'Fluke sweet' were increased after treatment, the production of 'Mimatsung' was increased 31.44% after 6W2BR treatment, and that of 'Fluke sweet' was increased 30.04% after 4W4BR treatment. Based on our findings, taking into consideration both production and quality, the use of 4W4BR, 6W2BR artificial light is recommended. The study next investigated the effect of addition of sodium selenite (5, 10, and 15 μM) in the nutrient solution on the nitrate content of plants. The results showed that the nitrate reductase activity of 'Mimatsung' was increased significantly with 5 and 10 μM sodium selenite traetment, to 2.72 and 2.69 μM NO2-/hr/g FW, respectively, and the nitrate content was decreased, to 3501、3512 mg/kg FW, respectively. In addition, these treatments accelerated the process of nitrogen metabolism and increased the contents of soluble proteins. The soluble sugars level of rape after the selenium treatment was increased. As the nitrogen metabolism and photosynthetic capacity were improved, so the fresh weights of 'Mimatsung' and 'Fluke sweet' were increased after treatment, to 16.19 and 27.20 g, respectively.In consideration of increasing the yield and reducing the nitrate level, addition of 5 μM sodium selenite to nutrient solution is suggested. In order to reduce the nitrate content, we replaced the nitrogen source in the nutrient solution with potassium sulfate or ammonium molybdate 3 or 5 days before harvest. The results showed that this replacement reduced the nitrate content , but the yield after 5 days of replacement dropped significantly. After 3 days of potassium sulfate or ammonium molybdate replacement, the nitrate levels of 'Fluke sweet' were decreased to 1370 and 4540 mg/kg FW,respectively. Adding potassium sulfate maintains osmotic pressure and ammonium molybdate supplies nitrogen in various forms, and therefore the production of rape was not affected. Potassium sulfate was more effective in terms of reducing nitrate content than ammonium molybdate.We therefore recommended replacing potassium sulfate in the nutrient solution 3 days before harvest, as it can achieve the purpose of producting vegetables with lower nitrate levels. The characteristics of the three rape cultivars were different in this study. The activity of nitraite reductase of 'Mimatsung' was insensitive to the external changing environment. However, 'Fluke sweet' was sensitive to external changing environment, and so the nitrate content was significantly affected by the nitrate reductase activity. The nitrate reductase activity of 'Ali' was significantly higher than the other rape cultivars, and therefore we did not use 'Ali' as a material for the following experiments because of the nitrate content was very low. We found that the effect of light quality on the rape was limited, but selenium treatment and replacement of nutrient solution with potassium sulfate 3 days before harvest were more effective when comparing the three experiments. Replacing the nutrient solution of potassium sulfate 3 days before harvest is a good way to reduce the nitrate content, and the cost is lower. The sodium selenite treatment cost is higher, but this treatment can not only increase the yield, but also the quality of the product. In conclusion, we suggest the use of 4W4BR 6W2BR artificial light and treatment with 5 μM sodium selenate or potassium sulfate to produce high yields and good quality hydroponic vegetables in a plant factory.
中文摘要 本試驗以'美松菜'、'福祿甜'、'阿麗'油菜為試驗材料,進行人工光源和養液之調控,研究植物工廠中栽培低硝酸根離子水耕蔬菜之可行方式。 藉由調整Light emitting diode (LED)紅藍光比例進行栽培,對照組於一般日照全光譜下栽培,三種不同光質組合分別為4W4BR、6W2BR及8W。研究結果顯示'福祿甜'及'阿麗'之硝酸還原酶活性於4W4BR及6W2BR處理下顯著上升,分別為7.35、6.72及16.22、5.37 μM NO2-/hr/g FW,硝酸根離子含量分別為2713、4123 mg/kg及1118、1345 mg/kg FW,有明顯下降的趨勢。另外,4W4BR及6W2BR處理後油菜之光合作用能力、碳水化合物含量及可溶性蛋白質含量皆有增加情形,使產量提升,'美松菜' 之地上部乾重於6W2BR比對照組增加31.44%,'阿麗'則增加了34.03%,為兼顧產量及品質建議以4W4BR、6W2BR作為人工光源。 以不同濃度硒酸添加於養液中,分別為5、10及15 μM,結果顯示'美松菜'於5 μM、10 μM硒酸處理下之硝酸還原酶活性明顯上升,其活性可達2.72、2.69 μM NO2-/hr/g FW,硝酸根離子含量則明顯下降,分別為3501、3512 mg/kg FW,加速氮代謝過程,造成可溶性蛋白含量之增加。光合作用產物於5~15 μM硒處理後有顯著增加,使'美松菜' 及'福祿甜'之地上部鮮重於硒處理後皆有顯著上升,分別為16.19及27.20 g,故建議以5 μM加入水耕養液中栽培油菜,使其增產且具降低硝酸根離子含量之效果。 藉由直接去除氮源達到降低硝酸根離子之目的,試驗中分別於採收前3天及5天更換成硫酸鉀或鉬酸銨養液,結果顯示可達到降低硝酸根離子之功效,然5天養液處理使產量顯著下降。採收前3天換硫酸鉀或鉬酸銨養液後,'福祿甜'硝酸根離子含量分別降至1370及4540 mg/kg FW,產量部分由於所添加的硫酸鉀可以維持其滲透壓,鉬酸銨以不同形式氮源供應,故油菜之產量不受影響。其中又以硫酸鉀養液對降低硝酸根離子較為有效,故較推薦水耕油菜於採收前3天換成硫酸鉀養液,可達生產安全蔬菜之目的。 本研究中三品種油菜之特性明顯不同,'美松菜'之硝酸還原酶活性較不易受外在環境因素影響,故硝酸根離子含量變動較小,'福祿甜'之硝酸根離子含量則明顯受硝酸還原酶活性而變動,'阿麗'之硝酸還原酶活性顯著較高,其硝酸根離子含量相對較低,故後續實驗未繼續以其為試驗材料。由三試驗中對降低硝酸根離子含量之比較可發現,光質處理之效果較有限,硒處理及採收前3天換硫酸鉀養液可有效降低硝酸根離子含量,故建議植物工廠可以4W4BR或6W2BR光質組合為人工光源,於養液加入5 μM硒酸處理或硫酸鉀養液,以生產兼顧產量及品質之水耕蔬菜。
URI: http://hdl.handle.net/11455/89187
其他識別: U0005-2107201515302500
文章公開時間: 2016-07-22
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.