Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89189
標題: 木麻黃樹幹變色木材分布特性之研究
The research of distribution of tree discolored woods in Casuarina equisetifolia
作者: Chia-Ying Li
李佳螢
關鍵字: 變色木材
薄壁細胞
張力木質纖維
木麻黃
獨立變色木材
discolored wood
parenchyma cells
tension wood fibres
Casuarina equisetifolia
independance discolored wood
引用: 1. Albert. L., T. Hofmann, Zs. I. Nemeth, T. Retfalvi, J. Koloszar, Sz. Varga, and I. Csepregi. 2003. Radial variation of total phenol content in beech (Fagus sylvatica L.) wood with and without red heartwood. Holz als Roh- und Werkstoff 61: 227-230. 2. Bauch, J., and G. Koch. 2001. Biologische und chemische Untersuchungen ?ber Holzverf?rbungen der Rotbuche (Fagus sylvatica [L.]) und M?glichkeiten vorbeugender Ma?nahmen [Biological and chemical analyses about wood discolourations of common beech (Fagus sylvatica [L.]) and possibilities of preventing measures]. Final Report, Bundesforschungsanstalt f?r Forstund Holzwirtschaft, Universit?t Hamburg, 66 pp. 3. Baum, S., F. W. M. R. Schwarze, and S. Fink. 2000. Persistence of the gelatinous layer within altered tension-wood fibres of beech degraded by Ustulina deusta. New Phytol. 147: 347-355. 4. Blanchette, R. A., and H. H. V. Beek. 2005. The present invention provides agarwood from cultivated trees, and methods of generating agarwood in cultivated trees. United States Patent Application 20050008657. 5. Bollh?ner, B. J. Prestele, and H. Tuominen. 2012. Xylem cell death: emerging understanding of regulation and function. Journal of Experimental Botany 63 (3): 1081-1094. 6. Bosshard, H. H.. 1974. Holzkunde [Wood science], Volume 2. Birkh?user, Basel Stuttgart, 312pp. 7. Bowling, A. J., and K. C. Vaughn. 2008. Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose. American Journal of Botany 95(6): 655-663. 8. B?ren von, S. 2002. Der Farbkern der Buche (Fagus sylvatica L.) in der Schweiz n?rdlich der Alpen [Red heartwood formation in beech: identification, occurrence and economic importance]. Schweizerische Zeitschrift f?r Forstwesen, Supplement 86, Z?rich, 137 pp. 9. Butin, S., and A. L. Shigo. 1981. Radial shakes and 'Frost Cracks' in living oak trees. Research Paper NE-478. 10. Chakrabarty, K., A. Kumar, and V. Menon. 1994. Trade in agarwood. New Delhi: TRAFFIC India and WWF-India. 11. Du, S., and F. Yamamoto. 2007. An Overview of the biology of reaction wood formation. Journal of Integrative Plant Biology 49 (2): 131-143. 12. Hulme, A. C., and J. D. Jones. 1963. In Enzyme Chemistry of Phenolic Compounds, J. B. Pridham, Ed. (Pergamon, London, ), 97, pp. 13. Knoke, T. 2003. Predicting red heartwood formation in beech trees (Fagus sylvatica L.). Ecological Modelling 169: 295-312. 14. Mahler, G., and B. H?wecke. 1991. Verkernungserscheinungen bei der Buche in Baden-W?rttemberg in Abh?ngigkeit von Alter, Standort und Durchmesser [Occurrence of heartwood of beech in Baden-W?rttemberg depending on age, site and diameter]. Schweizerische Zeitschrift f?r Forstwesen 142: 375-390. 15. Mellerowicz, E. J., and T. A. Gorshkova. 2012. Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. Journal of Experimental Botany 63 (2): 551-565. 16. Mohamed, R., M. T. Wong, and R. Halis. 2013. Microscopic observation of 'Gaharu' wood from Aquilaria malaccensis. Pertanika J. Tropical Agricultural Science 36 (1): 43-50. 17. Naef, R. 2011. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: A review. Flavour and Fragrance Journal 26: 73-89. 18. Nakaba, S., S. Begum, Y. Yamagishi, H. Jin, T. Kubo, and R. Funada. 2012. Differences in the timing of cell death, differentiation and function among three different types of ray parenchyma cells in the hardwood Populus sieboldii x P. grandidentata. Trees 26: 743-750. 19. Nakaba, S., T. Kubo, and R. Funada. 2008. Differences in pattern of cell death between ray parenchyma cells and ray tracheids in the conifers Pinus densiflora and Pinus rigida. Trees 22: 623-630. 20. Nakaba, S., Y. Sano, T. Kubo, and R. Funada. 2006. The positional distribution of cell death of ray parenchyma in a conifer, Abies sachalinensis. Plant Cell Report 25: 1143-1148. 21. Nakada, R., and E. Fukatsu. 2012. Seasonal variation of heartwood formation in Larix kaempferi. Tree Physiology 32: 1497-1508. 22. Necesany, V. 1966. Die Vitalit?ts?nderung der Parenchymzellen als physiologische Grundlage der Kernholzbildung [The change in vitality of the parenchyma cells as physiological basis of the heartwood formation]. Holzforschung und Holzverwertung 18: 61-65. 23. Necesany, V. 1969. Forstliche Aspekte bei der Entstehung des Falschkerns der Rotbuche [Forestry aspects of the formation of false heart of common beech]. Holz-Zentralblatt 95: 563-564. 24. Nobuchi, T., and H. Harada. 1983. Physiological features of the 'white zone' of sugi (Cryptomeria japonica D. Don)—cytological structure and moisture content. Mokuzai Gakkaishi 29: 824-832. 25. Nobuchi, T., K. Kuroda, R. Iwata, and H. Harada. 1982. Cytological study of the seasonal features of heartwood formation of sugi (Cryptomeria japonica D. Don). Mokuzai Gakkaishi 28: 669-676. 26. Nobuchi, T., K. Takai, and H. Harada. 1987. Distribution of heartwood phenols in the trunk of sugi (Cryptomeria japonica D. Don) and partial characterization of heartwood formation. Mokuzai Gakkaishi 33: 88-96. 27. Pearce, R. B. 1996. Tansley Review No. 87 Antimicrobial defences in the wood of living trees. New Pkytol. 132: 203-233. 28. Pearce, R. B., S. Sumer, S. J. Doran, T. A. Carpenter, and L. D. Hali. 1994. Non-invasive imaging of fungal colonization and host response in the living sapwood of sycamore (Acer pseudoplatanus L.) using nuclear magnetic resonance. Physiological and Molecular Plant Pathology 45: 359-384. 29. Ramadhani, R. C. 2006. Jaringan Pengakumulasiresin Gaharupada Aquilaria crassna. Deprtemen Biologi Fakultas Matematika Dan ilmupengetahuan Alam institute pertanan Bogor. 30. Rayner, A. D. M., and L. Boddy. 1988. Fungal decomposition of wood. Its biology and ecology. Wiley, Chichester. 31. Sachsse, H. 1991. Kerntypen der Rotbuche [Heartwood types of common beech]. Forstarchiv 62: 238-242. 32. Saito, K., T. Mitsutani, T. Imai, Y. Matsushita, A. Yamamoto, and K. Fukushima. 2008. Chemical differences between sapwood and heartwood of Chamaecyparis obtuse detected by ToF-SIMS. Applied Surface Science 255: 1088-1091. 33. Schmidt, O. 2006. Wood and Tree Fungi Biology, Damage, Protection, and Use. Springer. 34. Schmitt, U., W. Liese. 1993. Response of xylem parenchyma by suberization in some hardwoods after mechanical injury. Trees 8: 23-30. 35. Seeling, U. 1998. Kerntypen im Holz - Konsequenzen f?r die Verwertung am Beispiel der Buche (Fagus sylvatica L.) [Heartwood types - consequences for timber utilisation in the case of beech (Fagus sylvatica L.)]. Schweizerische Zeitschrift f?r Forstwesen 149: 991-1004. 36. Shigo, A. L., and W. C. Shortle. 1979. Compartmentalization of discolored wood in heartwood of red oak. Phytopathology 69: 710-711. 37. Smith, K. T. 1997. Phenolics and compartmentalization in the sapwood of broad-leaved trees. In: Dashek WD, ed. Methods in plant molecular biology. Boca Raton, FL, USA: CRC Press, 457pp. 38. Stewart, C. M. 1966. Excretion and heartwood formation in living trees. Science Stewart 1068, 74pp. 39. Sun. Q., T. L. Rost, and M. A. Matthews. 2008. Wound-induced vascular occlusions in Vitis vinifera (vitaceae):tyloses in summer and gels in winter. American Journal of Botany 95 (12): 1498-1505. 40. Tattar, T.A. 1978. Diseases of shade trees. Academic Press, New York. 41. Torelli, N. 1984. The ecology of discoloured wood as illustrated by beech (Fagus sylvatica L.). IAWA Bulletin 5:121-127. 42. Walter, M., and L. J. Kucera. 1991. Vorkommen und Bedeutung verschiedener Kernformen bei der Buche (Fagus sylvatica L.) [Occurrence and importance of different heartwood types of beech (Fagus sylvatica L.)]. Schweizerische Zeitschrift f?r Forstwesen 142: 391-406. 43. Wernsd?rfer, H. 2005. Analysing red heartwood in Beech (Fagus sylvatica L.) related to external tree characteristics – towards the modeling of its occurrence and shape at the individual tree level. 44. Yamamoto, K.. 1982. Yearly and seasonal process of maturation of ray parenchyma cells in Pinus species (in Japanese with English Summary). Res Bull Coll Exp For Hokkaido University 39: 245–296. 45. Zimmermann, M. H.. 1983. Xylem structure and the ascent of sap. Springer, Berlin Heidel berg, New York. 46. Zycha, H. 1948. ?ber die Kernbildung und verwandte Vorg?nge im Holz der Rotbuche [About the heartwood formation and similar processes in the wood of Common beech]. Forstwissenschaftliches Centralblatt 67: 80-109.
摘要: Discolored wood is important for tree physiology and structure. Physiologically, it stores metabolic waste, and gives discolored wood the ability to resist pathogens. In structure, it fills the parenchyma cells, vessels or intercellular spaces with metabolic waste to enhance structure denseness, improves the structural strength of trees, it can also protect the tension wood fiber G layer, maintaining the tree to resist the elastic force. Trees are enormous, slow-growing and hard, few scholars studied on discolored wood, they have made different hypotheses to explain the distribution and causes of the discolored wood, but no systemic research. In this study, previous hypotheses are ordered, from the basic structure, distribution and possible position to understand the causes of the discolored wood. Casuarina equisetifolia is the most common species of Taiwan coast windbreaks, through anatomical observations, discolored wood appears under the tree's wounds, dead branches, scarring and decadent. In this study, it is found that a kind of discolored wood is narrow-distributed and exists independently, not related to any tree wounds and decays. It called 'independance discolored wood', that is unique and have not been discovered previously. The study compares previous studies with Casuarina equisetifolia observations to find different types of discolored wood and its forming cause.
樹木變色木材在生理及結構上具有重要的用途,生理上作為一個儲存代謝廢物的手段,並賦予變色木材具有抵抗病原菌的能力。在結構上,薄壁細胞、導管或細胞間隙等空腔被代謝物質填充,成為密實的結構,提升樹木的結構強度。並能保護張力木質纖維中的G層,維持樹木的彈性以抵抗外力。 然而樹木是巨大、生長緩慢且堅硬的生物,少有學者對變色木材進行研究;過去學者,提出不同假說來解釋變色木材的分佈及成因,但沒有學者進行一個系統性的整理。本研究對前人假說做一個整理,從變色木材基本結構、分布位置及可能形成原因進行了解。 木麻黃是台灣海岸防風林最常見的樹,透過解剖觀察發現,樹木外觀出現傷口、枯死枝條、結疤及腐朽的情況下,樹體內會出現變色木材。本研究中發現一種變色木材,該變色木材獨立存在,與任何傷口及腐朽都沒有連結,分布範圍狹小,本人稱之為'獨立變色木材'(independance discolored wood),一種目前現有知識完全無法解釋的變色木材。 因此本研究結合觀察木麻黃及整理前人研究對照,對變色木材的類型及可能成因重新進行一個新的詮釋。
URI: http://hdl.handle.net/11455/89189
其他識別: U0005-2811201416184231
文章公開時間: 2014-08-31
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.