Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89194
標題: 植物生長調節劑誘導喜樹芽體及癒傷組織形成之影響
The Effect of Plant Growth Regulators on Bud and Callus Formation of Camptotheca acuminata Decaisne in vitro
作者: Yi-Ching Chiang
江奕靜
關鍵字: 喜樹
組織培養
癒傷組織
頂芽
腋芽
褐化
Camptotheca acuminata Decaisne
in vitro
callus
apical bud
lateral bud
browning
引用: 王玲麗、劉文哲. 2005. 不同種源喜樹幼枝中喜樹鹼的含量. 植物學報. 22(5): 584-589. 方煒、張祖亮、吳瑞宏. 1998. 即時監控系統應用於二氧化碳施肥對金線蓮組織培養苗生長之研究. 農業機械學刊. 7: 29-38. 吳麗君. 2003. 木本植物組織培養技術在林業科研與生產中的應用與局限.福建林業科技. 30(1): 67-69. 林正斌、王慶裕、葉茂生. 1998. 乙烯的合成與作用及其抑制因子. 科學農業. 46: 181-185. 邱雯卉. 2002. 環境因子、乙烯與培養基添加物對蝴蝶蘭瓶苗品質的影響.中興大學園藝所碩士論文. 胡凱、祝順琴、談鋒、唐克軒. 2004. 曼地亞紅豆杉愈傷組織誘導和繼代培養中抑制褐化的研究. 西南師範大學學報(自然科學版). 29(4): 658-663. 高雯琪. 2006. 培養基添加有機酸對蝴蝶蘭瓶苗生長之影響. 中興大學園藝學系所學位論文. 高景輝. 2006. 植物荷爾蒙生理. 華香園出版社. 夏銘、吳絳雲、張麗梅. 1996. 紅豆杉組織培養中褐變問題的研究. 生物技術. 6(3): 18-20. 陳益明. 1988. 植物荷爾蒙-生長素與激勃素. 植物生長調節劑在園藝作物之應用研討會專集. 台灣省台中區農業改良場. p15-40. 陳舜英、黃玲瓏、簡慶德、許原瑞. 2004. 層積濕藏對喜樹果皮構造及種子發芽儲藏的影響. 臺灣林業科學. 19(4): 287-295. 陳義宏. 2012. 吲哚丁酸對不同成熟度,不同時期之喜樹插穗在不同介質扦插之影響. 中興大學園藝學系所學位論文. 陳劍勇. 2011. 杉木愈傷組織培養中的褐化控制研究. 亞熱帶植物科學. 40 (3): 47-49. 張永青. 1991. 圖解生化學. 合記圖書出版社. 張本懋. 2013. 植物生長調節劑,採樣時期與光源對喜樹組織培養培植體生長的影響. 中興大學園藝學系所學位論文. 張宗勤、撒文清. 2002. 喜樹藥用林營造. 中藥材. 25(2): 85-86. 張俊琦、羅曉芳. 2007. 牡丹組織培養中褐化的發生原因與防止方法的研究.瀋陽農業大學學報. 37(5): 720-724. 張淑華、何政坤. 2008. 利用毛狀根生產喜樹鹼. 林業研究專訊. 15(3): 50-50. 張淑華、何政坤、蔡錦瑩、陳國峰、黃芷雲. 2007. 喜樹腫瘤細胞培養與喜樹鹼生產. 臺灣林業科學. 22(4): 413-422. 馮小榮、S. M. Paul. 1999. Topotecan對癌細胞系SUD4和DOHH2的拓撲異構酶(I,II)的毒性作用. 生命科學研究. 3(2): 110-117. 楊士平、李慶國. 2009. 喜樹鹼及其衍生物的歷史回顧及展望. 化學. 67(1): 45-60. 楊千瑩. 2000. 台灣產葛及青脆枝之成分分析與青脆枝癒合組織之誘導. 國立屏東科技大學熱帶農業暨國際合作研究所碩士論文. 廖玉琬、徐善德. 1999. 植物生理學. ?英文化. 劉展眉、崔英德. 2007. Ri質粒誘導喜樹毛狀根培養基中喜樹堿的研究. 生態環境. 16(4): 1266-1270. 劉業經. 1981. 臺灣木本植物誌. 國立中興大學農學院出版委員會. 羅惠萍. 2000. 錫蘭橄欖莖頂組織培養之研究. 中興大學園藝所碩士論文. Ahvenainen, R. 1996. New approaches in improving the shelf life of minimally processed fruit and vegetable. Trends in Food Sci. Technol. 7: 179-187. Barna, K. S. and A. K. Wakhlu. 1988. Axillary shoot induction and plant regeneration in Plantago ovata Forssk. Plant Cell Tiss. Org. Cult. 15: 169-73. Benson, E. E. 2000. Special symposium: in vitro plant recalcitrance. Do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cell Dev. Biol. Plant. 36: 163-170. Biddington, N. L. 1992. The influence of ethylene in plant tissue culture. Plant Growth Regul. 11: 173-187. Biondi, S., T. Diaz, I. Iglesias, G. Gamberini, and N. Bagni. 1990. Polyamines and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol. Plant. 78(3): 474-483. Branca, C., G. Bucci, P. Domiano, A. Ricci, A. Torelli, and M. Bassi. 1991. Auxin structure and activity on tomato morphogenesis in vitro and pea stem elongation. Plant cell, tiss. organ cult. 24(2): 105-114. Brainerd, K. E. and L. H. Fuchigami. 1981. Acclimatization of aseptically cultured apple plants to low relative humidity [Water stress, hardiness]. J. Amer. Soc. hort. Sci. Bressan, P. H., Y. J. Kim, S. E. Hyndman, P. M. Hasegawa, and R. A. Bressan. 1982. Factors affecting in vitro propagation of rose. J. Am. Soc. Hortic. Sci. 107(6): 979-990. Buddendorf-Joosten, J. M. C. and E. J. Woltering. 1994. Components of the gaseous environment and their effect on plant growth and development in vitro. Plant Growth Reg. 15(1): 1-16. Burg, S. P., A. Apelbaum, W. Eisinger, and B. G. Kang. 1971. Physiology and mode of action of ethylene. HortSci.(United States) 6(4). Burg, S. P. and J. A. J. Stolwijk. 1959. A highly sensitive katharometer and its application to the measurement of ethylene and other gases of biological importance. J. Biochem. Microbiol. Technol. Eng. 1(3): 245-259. Cassells, A. C. and B. F. Carney. 1987. Adventitious regeneration in Pelargonium x domesticum Bailey. Acta. Hortic. 212: 419-425. Cleland, R. E. and T. Lomax. 1977. Hormonal control of H+-excretion from oat cells. In: Marre, E. and O. Ciferri (eds). Regulation of Cell Membrane Activities in Plants. North-Holland. Amsterdam. pp. 161-171. Creasy, L. L. 1968. The increase in phenylalanine ammonia-lyase activity in strawberry leaf disks and its correlation with flavonoid synthesis. Phytochem. 7(3): 441-446. Davies, D. R. 1980. Rapid propagation of roses in vitro. Sci. Hortic.13(4): 385-389. Dolan, L. 1997. The role of ethylene in the development of plant form. J. Exp. Bot. 48: 201-210. Fujiwara, K., S. Kira, T. Kozai, and I. Watanabe. 1987. Fundamental studies on environment in plant tissue culture vessels. (3) Measurements of carbon dioxide gas concentration on closed vessels containing tissue cultured plantlets and estimates of net photosynthetic rates of the plantlets. J. Agr. Met. 43(1): 21-30. Gamburg, K. Z. 1982. Regulation of cell division by auxin in isolated cultures. In Plant growth substances, 1982: the proceedings of the 11th International Conference on Plant Growth Substances. Aberystwyth. 12th to 16th July, 1982/edited by PF Wareing. London. New York. Academic Press. 1982. George, E. E. 1993. Plant growth regulators. In: E. E. George (eds.). Plant Propagation by Tissue Culture. p.420-445. Exegetics Limited. England. Guo, L., Y. Ma, J. Shi, and S. Xue. 2009. The purification and characterisation of polyphenol oxidase from green bean (Phaseolus vulgaris L.). Food Chem. 117: 143-151. Hillman, J. R. and H. Y. Yeang. 1979. Correlative inhibition of lateral bud growth in Phaseolus vulgaris L. Ethylene and the physical restriction of apical growth. J. Exp. Bot. 30(6): 1075-1083. Hsiang, Y. H., R. Hertzberg, S. Hecht, and L. F. Liu. 1985. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260(27): 14873-14878. İyidoǧan, N. F. and A. Bayındırlı. 2004. Effect of L-cysteine, kojic acid and 4-hexylresorcinol combination on inhibition of enzymatic browning in Amasya apple juice. J. Food Eng. 62(3): 299-304. Kadota, M. and Y. Niimi. 2003. Effect of cytokinin types and their concentrations on shoot proliferation and hyperhydricity in in vitro pear cultivar shoots. Plant Cell Tiss.Cult. 72: 261-265. Kahn, V. 1985. Effect of proteins, protein hydrolyzates and amino acids on o‐dihydroxyphenolase activity of polyphenol oxidase of mushroom, avocado, and banana. J. Food Sci. 50(1): 111-115. Ke, D. and M. E. Saltveit. 1989. Wound‐induced ethylene production, phenolic metabolism and susceptibility to russet spotting in iceberg lettuce. Physiol. Plant. 76(3): 412-418. Kim, Y. S., E. J. Hahn, E. C. Yeung, and K. Y. Paek. 2003. Lateral root development and saponin accumulation as affected by IBA or NAA in adventitious root cultures of Panax ginseng CA Meyer. In Vitro Cell. Dev. Biology-Plant. 39(2): 245-249. Kozai, T. 1989. Autotrophic (sugar-free) micropagation for a significant reduction of production costs. Chronica Hort. 29: 19-20. Kozai, T. 1991. Photoautotrophic micropropagation. In Vitro Cell. Dev. Biol. Plant 279: 47-51. Kozai, T., K. Iwabuchi, K. Watanabe, I. Watanabe. 1991. Photoautotrophic and photomixotrophic growth of strawberry plantlets in vitro and changes in nutrient composition of the medium. Biomed. Life Sci. 25: 107-115. Kumar, P. P., D. M. Reid, and T. A. Thorpe. 1987. The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons of Pinus radiata in vitro. Physiol. Plant. 69: 244-252. Kumar, P. P., P. Lakshmanan, and T. A. Thorpe. 1998. Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell. Dev. Biol.-Plant. 34(2): 94-103. Lafuente, M. T., L. Zacarias, M. A. Martínez-Téllez, M. T. Sanchez-Ballesta, and E. Dupille. 2001. Phenylalanine ammonialyase as related to ethylene in the development of chilling symptoms during cold storage of citrus fruits. J. Agric. Food Chem. 49: 6020-6025. Li, S., Y. Yi, Y. Wang, Z. Zhang, and R. S. Beasley. 2002. Camptothecin accumulation and variations in Camptotheca. Plant. Med. 68(11): 1010-1016. Liu, Z. and J. C. Adams. 1998. Seed source variation in camptothecin concentrations of nursery-grown Camptotheca acuminata seedlings. New Forests. 16(2): 167-175. Mackenzie, I. A. and H. E. Street. 1970. Studies on the Growth in Culture of Plant Cells: VIII. The production of ethylene by suspension cultures of Acer pseudoplatanus L. J. Exp. Bot. 21(3): 824-834. Maes, K. and P. C. Debergh. 2003. Volatiles emitted from in vitro grown tomato shoots during abiotic and biotic stress. Plant Cell Tiss. Org. Cult. 75: 73-78. Mensuali-Sodi, A., M. Panizza., and F. Tognoni. 1995. Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcuttings in vitro. Plant Growth Regul. 17(3): 205-212. Murashige, T. 1974. Plant propagation through tissue cultures. Ann. Rev. Plant. Physiol. 25: 135-166. N?rgaard, J. V. and P. Krogstrup. 1991. Cytokinin induced somatic embryogenesis from immature embryos of Abies nordmanniana Lk. Plant cell rep. 9(9): 509-513. Nour, K. A. and T. A. Thorpe. 1994. The effect of the gaseous state on bud induction and shoot multiplication in vitro in eastern white cedar. Physiol. Plant. 90(1): 163-172. Perdue Jr, R. E., R. L. Smith, M. E. Wall, J. L. Hartwell, B. J. Abbott. 1970. Eds. Camptotheca acuminata Decaisne (Nyssaceae). Source of camptothecin, an antileukemicalkaloid. Agr. Research Service Technical Bulletin vol. 1415. Pierik, R. L. M. 1997. In vitro culture of higher plants. Springer Science & Business Media. Pierik, R. L. M., J. Oosterkamp, and M. A. C. Ebbing. 1997. Factors controlling adventitious root formation of explants from juvenile and adult Quercus robur 'Fastigiata'. Sci. Hortic. 71(1): 87-92. Ravindra, B. M. and J. V. Staden. 2005. Role of antioxidants and amino acids on somatic embryogenesis of Pinus patula. In Vitro Cell. Dev. Biol. Plant. 41: 181-186. Ray, P. M. 1973. Regulation of β-glucan synthetase activity by auxin in pea stem tissue II. Metabolic requirements. Plant Physiol. 51(4): 609-614. Rout, G. R. and P. Das. 1997a. In vitro organogenesis in ginger (Zingiber officinale Rosc.). J. Herbs Spices Med. Plants. 4(4): 41-51. Sankar-Thomas, Y. D. and R. Lieberei. 2011. Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne. grown in different culture systems. Plant Cell, Tissue and Organ Cult. 106(3): 445-454. Sauerbrey, E., K. Grossmann, and J. Jung. 1987. Is ethylene involved in the regulation of growth of sunflower cell suspension cultures? J. plant physiol. 127(5): 471-479. Schafer, F., E. Groskurt, and K. H. Neumann. 1985. Organogenesis and embryogenesis in cultured petioles of carrots (Daucus carota L.). Somat. Embryog. IPRA proj. CNR. 159-170. Stevenson, T. T. and R. E. Cleland. 1981. Osmoregulation in the Avena coleoptile in relation to auxin and growth. Plant physiol. 67(4): 749-753. Syōno, K. and T. Furuya. 1972. Effects of cytokinins on the auxin requirement and auxin content of tobacco calluses. Plant and cell physiol. 13(5): 843-856. Taiz, L. and E. Zeiger. 2010. Plant physiology. 5thed. Sinauer Assocites. Inc. Gouk. Tao, K. L. J. and J. G. Buta. 1986. Differential effects of camptothecin and interactions with plant hormones on seed germination and seedling growth. Plant growth regul. 4(3): 219-226. Vanderhoef, L. N. and R. R. Dute. 1981. Auxin-regulated wall loosening and sustained growth in elongation. Plant physiol. 67(1): 146-149. Vanderhoef, L. N. and W. R. Briggs. 1978. Red light-inhibited mesocotyl elongation in maize seedlings I. The auxin hypothesis. Plant physiol. 61(4): 534-537. Wall, M. E., M. C. Waant, C. E. Cooke, K. H. Palmer, A. T. McPhail, and G. A. Sim. 1966. Plant antitumor agents I. The isolation and structure of camptothecin. A novel alkaloidal leukaemia and tumor inhibitor from Camptotheca acuminate. J. Am. Chem. Soc. 88: 3888-3890. Wenck, A. R., B. V. Conger, R. N. Trigiano, and C. E. Sams. 1988. Inhibition of somatic embryogenesis in orchardgrass by endogenous cytokinins. Plant physiol. 88(4): 990-992. Wetzstein, H. Y. and H. E. Sommer. 1982. Leaf anatomy of tissue-cultured Liquidambar styraciflua (Hamamelidaceae) during acclimatization. Amer. J. Bot. 1579-1586. Wetzstein, H. Y. and H. E. Sommer. 1983. Scanning electron microscopy of in vitro-cultured Liquidambar styraciflua plantlets during acclimatization. J. amer. Soc. hort. Sci. 108: 475-80. Yang, L. X., X. Pan, and H. J. Wang. 2002. Novel camptothecin derivatives. Part 1: oxyalkanoic acid esters of camptothecin and their in vitro and in vivo antitumor activity. Bioorg. Med. Chem. Lett. 12: 1241-1244. Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35(1): 155-189. Yoon, Y. J., M. Mobin, E. J. Hahn, and K. Y. Paek. 2009. Impact of in vitro CO2 enrichment and sugar deprivation on acclimatory responses of Phalaenopsis plantlets to ex vitro conditions. Environ. Exp. Bot. 65(2): 183-188. Yoshii, H. and H. Imaseki. 1981. Biosynthesis of auxin-induced ethylene. Effects of indole-3-acetic acid, benzyladenine and abscisic acid on endogenous levels of 1-aminocyclopropane-l-carboxylic acid (ACC) and ACC synthase. Plant and Cell Physiol. 22(3): 369-379.
摘要: The difficulties of establishing primary inductive culture and explant cultured browning in Camptotheca acuminata Decaisne in vitro became the barrier of cultural system. In this research, different parts of explant such as apical bud, lateral bud, seedling apical bud, seedling lateral bud, seed, and leaf were tested to discuss the effect of kinetin, cysteine, IBA, and leaf maturity on tissue culture. After 8 weeks culture, kinetin at high concentration 10 μM made serious browning on lateral bud and seedling lateral bud. Browning of apical bud were slighter than lateral bud, and apical bud sprouted at 100% induction rate of bud as soon as applied 2.5、5、10 μM kinetin. Better induction rate of bud sprout of seedling apical bud also can attain 75% at 2.5 μM kinetin treatment. No browning was observed in apical buds applied with cysteine treatment. Lower browning rate were observed in 25 mg•l-1 cysteine treatment of lateral bud, but a higher concentration at 100 mg•l-1 led to more serious browning and lower induction rate of bud sprout. Different explants were observed after 4 weeks cultured in 0, 1, 2, 3, 4 μM IBA. Adding IBA 3 μM can reduce browning rate of lateral bud to 11%, and made a higher induction rate of bud sprout at 78%. Seeds germination in IBA 2 μM treatment resulted in a higher germination rate of 90%. Leaf callus formation amount increased with IBA concentration. However, IBA 2 μM application formed green tight callus. In the culture of axillary bud and leaf, the CO2 concentration increased in the vessel at the beginning of dark period and decreased at the beginning of light period. In the culture of axillary bud, seed and leaf, applied higher IBA concentration treatment at 3、4 μM led to higher C2H4 concentration in the vessel. The leaves were divided by three maturities at S1, S2 and S3, which were induced to form callus. Only observed explant enlargement on the youngest stage(S1), which were induced with swollen tissue and bulges. The mature stage(S3) lead to serious browning. Better induction of compact callus were observed on S2 maturity.
喜樹在組織培養上常有初代誘導建立困難及培植體褐化等障礙,本試驗分別以喜樹枝條頂芽及腋芽、無菌種子苗頂芽及腋芽、種子和葉片為培植體,分別探討kinetin、半胱胺酸、IBA及葉片成熟度對組織培養之影響。 在培養八週後,高濃度10 μM kinetin會造成腋芽及種子苗腋芽嚴重褐化,頂芽的褐化情況較腋芽輕微,且萌芽率較高,在2.5、5、10 μM kinetin皆有100%萌芽率。種子苗頂芽萌芽率以2.5 μM kinetin處理最高,可達75%。 在添加各濃度半胱胺酸處理中沒有觀察到頂芽褐化情形,腋芽在添加25 mg•l-1時有較低褐化率為10%,但在添加100 mg•l-1時褐化情形加重且萌芽率較低。 將不同培植體分別培養於0、1、2、3、4 μM IBA四週後觀察。添加IBA 3 μM可以降低腋芽褐化率至11%,並且有較高萌芽率78%。種子發芽在IBA 2 μM處理可以有較高萌芽率90%。IBA濃度越高,葉片癒傷組織形成量越高,但以IBA 2 μM處理生成之綠色緊實癒傷組織品質較佳。在腋芽及葉片培養中,暗期初期瓶內二氧化碳濃度升高,明期初期則呈下降趨勢。在腋芽、種子及葉片培養中,皆以較高IBA濃度3、4 μM處理者瓶內乙烯濃度較高。 取三種成熟度葉片(S1、S2、S3)培養誘導癒傷組織,最幼嫩者(S1)僅觀察到葉片培植體增大及突起,較成熟者(S3)則嚴重褐化,以中間成熟度S2有較良好的癒傷組織誘導情形。
URI: http://hdl.handle.net/11455/89194
其他識別: U0005-1308201501534500
文章公開時間: 2018-08-17
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.