Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89199
標題: 生物炭應用於甘藍及番茄育苗介質之研究
Application of biochar as a growing substrate for cabbage (Brassica oleracea L. var. capitata L.) and tomato (Solanum lycopersicon) seedling growth
作者: Yi-Fen Chu
朱宜芬
關鍵字: 生物炭
泥炭土
育苗介質
biochar
peat moss
growing substrate
引用: 王典、張祥、薑存倉、彭抒昂。2012。生物質炭改良土壤及對作物效應的研究進展。中國生態農業學報 20:963-967。 王海珍、韓路、賈文鎖。2013。胡楊(Populus euphraticu)與灰胡楊(Populus pruinosa)種子萌發對不同鹽類脅迫的響應。中國沙漠 33:743-750。 王曉雪、付亞文、金巨勝。1997。蔬菜合理施肥。北京。中國農業出版社。pp. 15- 19。 司亞平、何偉明。1999。番茄穴盤育苗技術規範。農村實用工程技術 1:8-9。 司亞平、何偉明。2000。穴盤育苗技術要點一穴盤育苗配套資料及設施的準備。中國蔬菜 6:52-53。 司亞平、何偉明、陳殿奎。1993。番茄穴盤育苗營養面積選擇試驗初報。中國蔬菜1:29-32。 李力、劉婭、陸宇超、梁中耀、張鵬、孫紅文。2011。生物炭的環境效應及其應用的研究進展。環境化學30:1411-1421。 李文汕。2011。有機栽培介質的生產製造及應用。台灣有機廢棄物的再利用有機質肥料之產產及應用研究。中正基金會專題研究報告 p. 101-126。 李祥雲、趙明、高峻嶺、於秋華、宋朝玉、朱培生。2002。穴盤育苗基質的養分供應對蔬菜幼苗生長的影響。山東農業大學學報 33:442-447。 李婷婷、馬蓉麗、成妍、吳海濤、焦彥生、喬寧。 2013。中國蔬菜基質栽培研究新進展。農學學報 3:30-34。 李霞、呂國華、孟勝。2005。基質開發的研究現狀、存在問題及發展趨勢。安徽農學通報11:28-29。 李謙盛、蔔崇興。2003。蘆葦末基質應用於番茄穴盤育苗的配比優化。上海農業學報 19(4):3-7。 阮育奇、林俊彥。1997。番茄栽培與營養、生理障害。財團法人農友社會福利基金會。p. 1-16。 林大方。2013。生物炭材料與熱解溫度對其農藝性能的影響。臺灣大學森林環境暨資源學研究所學位論文。臺北。63pp.。 何緒生、耿增超、佘雕、張保健、高海英。2011。生物炭生產與農用的意義及國內外動態。農業工程學報 27:1-7。 吳正宗。1997。非土壤介質與農業生產。興大農業 23:17-20。 吳麗春。1995。穴盤育苗成敗的關鍵。桃園區農業專訊 14:12-13。 徐斌芬、章銀柯、包志毅、黎念林。2007。園林苗木容器栽培中的基質選擇研究。 現代化農業 1:10-13。 梁金鳳、吳建平、王勝濤、文方芳、賈小紅、金強、張彩月。2012。果林修剪廢棄物堆肥發酵技術研究。中國農業推廣28:49-51。 崔秀敏、王秀峰。2001。蔬菜育苗基質及其研究進展。天津農業科學 7:37-42。 崔秀敏、王秀峰。2004。基質供水狀況對番茄穴盤苗碳氮代謝及生長發育的影響。園藝學報 31:477-481。 陳可薇。2015。番茄莖葉資源化再利用於蔬菜栽培之研究。國立中興大學園藝系碩士論文。台中。67pp.。 陳俊位、戴振洋。2000。十字花科蔬菜穴盤苗常見之病害種類及防治方法。臺中區農業專訊 31:16-22。 孫文章、謝桑煙。1998。甘藍穴盤育苗技術。台南區農業改良場技術專刊 87-4 (No.76)。 張庚鵬、李艷琪、黃維廷、林毓雯、劉禎祺。2005。作物之合理化肥培管理。合理化施肥專刊135-146。 費素娥、王秀峰、劉吉剛。2006。育苗基質中氮磷鉀配比對番茄穴盤苗品質的影響。山東農業科學 01:50-54。 楊秋忠。2011。快速處理的生產製造。台灣有機廢棄物的再利用有機質肥料之生產及應用研究。中正基金會專題研究報告 p. 127-132。 楊紅麗、王子崇、張慎璞、喬改梅。2009。農業有機廢棄物發酵基質番茄育苗的試驗研究。中國農學通報 25:304-307。 楊期和、葉萬輝、廖富林、尹小娟。2005。植物化感物質對種子萌發的影響。生態學雜誌 24:1459-1465。 薛佑光。2000。介質理化特性及對甘藍與番茄穴盤苗之影響。國立中興大學園藝學系碩士論文。台中。92pp.。 葉士財。1998。五種有機介質於盆栽使用中之理化性變化。國立中興大學園藝系碩士論文。台中。104pp.。 農業統計年報。2013。農業統計資料查詢。2014。農業廢棄物估計。http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx 潘靜嫻、黃丹楓、王世平、賈志寬。2002。育苗基質pH 對甜瓜穴盤苗營養特性的影響。植物營養與肥料學報 8:251-253。 戴振洋。2000。蔬菜育苗穴盤之探討。臺中區農業專訊。行政院農業委員會臺中區農業改良場 出版。31期。 戴振洋、蔡宜峰、郭孚燿。1996。肥料對不同品種甘藍穴盤苗生長之影響。臺中區農業改良場研究彙報 50:11-20。 戴振洋、蔡宜峰、張隆仁、邱建中。2002。不同介質與育苗盤對紫錐花幼苗品質之影響。臺中區農業改良場研究彙報 77:1-9。 謝祖彬、劉琦、許燕萍、朱春悟。2011。生物炭研究進展及其研究方向。土壤 43:857-861。 謝廣文、陳世銘、陳乃菁。2001。育苗環境與甘藍苗品質關係之模糊理論模擬。農業機械學刊 10:31-42。 Abad, M., P. Noguera, and S. Bures. 2001. National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresource Technol. 77:97–200. Angst, T. E. and S. P. Sohi. 2013. Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy 5: 221-226. Argo, W. R. and J. A. Biernbaum. 1994. Irrigation requirement, root-medium pH, and nutrient concentration of east lilies grown in five peat-based media with and without evaporation barrier. J. Amer. Soc. Hort Sci. 119:1151-1156. Arnon, D. I. and C. M. Johnson. 1942. Influence of hydrogen ion concentration on the growth of higher plant s under controlled conditions. Plant Physiol. 17:525. Atkinson, C. J., J. D. Fitzgerald, and N. A. Hipps. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. Barkham, J. P. 1993. For peat's sake: conservation or exploitation? Biodivers. Con-serv. 2:556–566. Bennett, A. J., G. D. Bending, D. Chandler, S. Hilton, and P. Mills. 2012. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol. Rev. 87:52-71. Bilderback, T. E., S. L. Warren, J. S. Owen, and J. P. Albano. 2005. Healthy substrates need physicals too. HortTechnology 15:747-751. Bilderback, T. E., W. C. Fonteno, and D. Ro Johnson. 1982. Physical properties of media composed of peanut hulls, pine bark, and peatmoss and their effects on azalea growth. J. Amer. Soc. Hort. Sci. 107(3):522-525. Blackwell P., G. Riethmuller, and M. Collins. Biochar application to soil. In: Lehmann J, Joseph S, editors. Biochar for environmental management: science and technology. London, UK/Sterling, VA, USA: Earthscan; 2010. p. 207-226. Bowman, D. C., R. Y. Evens, and L. L. Donge. 1994. Growth of chrysanthemum with ground automobile tires used as a container soil amendment. HortScience 29:774-776. Bunt, A. C. 1991. The relationship of oxygen diffusion rate to the air-filled porosity of potting substrates. Acta Hort. 294:215–224. Chan, K. Y., L. V. Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian J. of Soil Res. 45:629–634. Chan, K. Y., L. Van Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2008. Using poultry litter biochars as soil amendments. Soil Res. 46:437-444. Chandler, J. W. and J. E. Dale. 1993. Photosynthesis and nutrient supply in needles of Sitka spruce [Picea sitchensis (Bong.) Carr.]. New phytologist 125: 101-111. Chong, C. 2005. Experiences with wastes and composts in nursery substrates. Hort. Techno. 15:739–747. Cunniff, P. 1995. Official methods of analysis of AOAC international (16th ed). Aoac Intl publisher. 1141 pp. Delfine, S., F. Loreto, and V. Alvino. 2001. Drought - stress effects on physiology, growth and biomass production of rainfed and irrigated bell pepper plants in the Mediterranean region. J. Amer. Soc. Hort. Sci. 126:297-304. Dreesen, D. R. and R. W. Langhans. 1992. Temperature effects on growth of impatiens plug seedlings in controlled environments. J. Am. Soc. Hort. Sci. 117:209-215. Drzal, M. S., D. Keith Cassel, and W. C. Fonteno. 1999. Pore fraction analysis: a new tool for substrate testing. Acta Horticulturae 481: 43–53. Downie, A., A. Crosky, and P. Munroe. 2009. Physical properties of biochar. Chapter 2. In: Lehmann J. and Joseph S. (eds) Biochar for environmental management science and technology. Earthscan, London, p 13–32. Dumroese, R. K., J. Heiskanen, K. Englund, and A. Tervahauta. 2011. Pelleted biochar:chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenergy 35: 2018–2027. Fonteno1, W. C. and T. E. Bilderback. 1993. Impact of hydrogel on physical properties of coarse-structured horticultural substrates. J. Amer. Soc. Hort. Sci. 118:217-222. Gaskin, J. W., C. Steiner, K. Harris, K. C. Das, and B. Bibens. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. Asabe 51:2061-2069. Goldschmidt, E. E. and S. C. Huber. 1992. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant physiology 99: 1443-1448. Graber, E. R., Y. M. Harel, M. Kolton, E. Cytryn, A. Silber, D. R. David, L. Tsechansky, M. Borenshtein, and Y. Elad. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496. Hillel, D. 2012. Soil moisture and seed germination. Water deficits and plant growth 3: 65-89. Horwitz, W. 1970. Association of official analytical chemist. Official methods of analysis, 12th Ed., Sec. 2. p. 204. Huang, L. F., L. X. Song, X. J. Xia, W. H. Mao, K. Shi, Y. H. Zhou, and J. Q. Yu. 2013. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J. Chem. Ecol. 39:232-242. Knicker, H. 2010. 'Black nitrogen'–an important fraction in determining the recalcitrance of charcoal. Organic Geochemistry 41:947–950. Kookana, R. S., A. K. Sarmah, L. Van Zwieten, E. Krull, and B. Singh. 2011. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv. Agron., 112:103–143. Koranski, D. S. 1993. Plug production technique. Proceedings of 2nd Symposium on Seed Industry and Marketing of Horticultural Crops. p. 15 - 27. Laird, D. A. 2008. The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sesquestering carbon, while improving soiland water quality. Agron. J. 100: 178–181. Landis, T. D., R. W. Tinus, S. E. McDonald, and J. P. Barnett. Containers and growing media. In: The container tree nursery manual, vol. 2. Washington, DC, USA: USDA Forest Serv; 1990. Agric Handb. 674. Lin, Y. J. and G. S. Hwang. 2009. Charcoal from biomass residues of a Cryptomeria plantation and analysis of its carbon fixation benefit in Taiwan. biomass and bioenergy 33:1289–1294. Loescher, W. H., T. McCamant, and J. D. Keller. 1990. Carbohydrate reserves, translocation, and storage in woody plant roots. HortScience 25: 274-281. Major, J., M. Rondon, D. Molina, S. J. Riha, and J. Lehmann. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128.. Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. Methods of soil analysis (2nd ed). Amer. Soc. Agron. Inc. publisher. p.539-579. Noguera, D., S. Barot, K. R. Laossi, J. Cardoso, P. Lavelle, and M. H. Cruz de Carvalho. 2012. Biochar but not earthworms enhances rice growth through increased protein turnover. Soil Biol. and Biochem. 52:13-20. Prasad, M. and M. J. Maher. 1993. Physical and chemical properties of fractionated peat. Acta Hort. 342:257-264. Said-Pullicino, D., F. G. Erriquens, and G. Gigliotti. 2007. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresource Technology 98:1822-1831. Salvador, V. H., R. B. Lima, W. D. dos Santos, A. R. Soares, P. A. F. Böhm, R. Marchiosi, M. L. L. Ferrarese, and O. Ferrarese-Filho. 2013. Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS ONE 8: e69105. Singh, B., B. P. Singh, and A. L Cowie. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research 48:516-525. Spokas, K. A., K. B. Cantrell, J. M. Novak, D. W. Archer, J. A. Ippolito, H. P. Collins, A. A. Boateng, I. M. Lima, M. C. Lamb, A. J. McAloon, R. D. Lentz, and K. A. Nichols. 2012. Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 41:973–989 Sohi, S. 2012. Carbon storage with benefits. Science 338:1034–1035. Vaughn, S. F., J. A. Kenar, A. R.Thompson, and S. C. Peterson. 2013. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind. Crops Prod. 51:437–443. Vaughn, S. F., F. J. Eller, R. L. Evangelista, B. R. Moser, E. Lee, R. E. Wagner, and S. C. Peterson. 2014. Evaluation of biochar-anaerobic potato digestate mixtures asrenewable components of horticultural potting media. Ind. Crops Prod. ( in press) Yeager, T., C. Gilliam, T. E. Bilderback, D. Fare, A. Niemiera, and K. Tilt. 1997. Best management practices, guide for producing container-grown plants. Southern Nursery Association, Atlanta, Georgia. Yu, J. Q., S. F. Ye, M. F. Zhang, and W. H. Hu. 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31:129-139. Yuan, J. H., R. K. Xu, and H. Zhang. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology 102:3488-3497. Zhang, R. H., Z. Q. Duan, and Z. G. Li. 2012. Use of spent mushroom substrate as growing media for tomato and cucumber seedlings. Pedosphere 22:333–342.
摘要: Biochar is produced through a process called pyrolysis and is often made from agricultural wastes burned under limited oxygen conditions. The stable and carbon-rich solid material thus generated is known as biochar. This study investigated the potential of using Cryptomeria japonica biochar (CJB) and wood biochar (WB) mixed with peat moss (P) as growing substrates for cabbage and tomato transplant growth. Results from the physical-chemical analyses of these substrate materials indicated that CJB and WB are alkaline, the electrical conductivity (EC) levels of CJB and WB were lower than that of P. Nutrient contents of biochars were lower than peat moss, with the CJB being the lowest. Results from the particle size analysis indicated that P contains more fine-sized particles, but the biochar (CJB and WB) contain more coarse-sized particles. To investigate whether biochar contains any plant growth inhibitory substance, seed germination tests were conducted by using biochars as germination substrates. Our results indicated that germination rates of cabbage and tomato in the P, CJB, and WB treatments were all above 85%, suggesting that biochars (CJB and WB) do not contain any significant plant growth inhibitor and can be used as transplant growing media. Results from the cabbage seedling growth analysis indicated that the seedling index and absolute growth rate obtained from the CJB or WB mixed with P treatments were not significantly different from P, suggesting that CJB or WB could replace 50% peat moss as a growing medium of cabbage seedlings. In tomato, the best seedling growth was observed in the CJB25 treatment, and the seedling growth in the CJB5 and CJB50 treatments were not significantly different from that in P. The seedling index and absolute growth rate of WB-related treatments were not significantly different from those of P. These results further surpported that CJB or WB could replace at least 50% peat moss as a seedling growth medium, with 25% CJB replacement (CJB25) being the best. Because nutrient contents of CJB were relatively lower than that of P, nutrient solutions were applied once a day, once every three days, or once every five days to determine the best nutrient management strategy for CJB mixed with peat moss substrates. When the mixing ratio of CJB was no more than 50%, once every five days of Hoagland nutrient solution application was found to be suitable for cabbage seedling growth. On the other hand, when the mixing ratio of CJB was 75%, nutrient solution should be applied once every three days to maintain the comparable seedling growth. When the tomato seedlings were treated with Yamasaki's tomato nutrient solution, once every five days of nutrient solution application was enough to maintain a good seedling growth in substrates mixed with no more than 50% of CJB. However, under these conditions, the tomato seedlings showed slightly poor quality, but had less leggy phenomenon compared to those supplied with nutrient solution once every three days. Similarly, when the mixing ratio of CJB was 75%, once every three days of nutrient supply was more appropriate. Results from chemical analysis of fast treated tomato residue (TF), CJB, and P indicated that the electrical conductivity (EC) level of TF was higher than that of P. Nutrient contents of TF were higher than peat moss and biochars. The germination rate of cabbage and tomato in TF was 23.33% and 0%, respectively. Results from growth analyses of TF, CJB, and P mixed media treated cabbage and tomato seedlings showed that PBT1 is more suitable for cabbage and tomato seedling growth, followed by PBT2, and PBT3 is less suitable. Due to the high content of phenols and soluble salts in TF, TF alone was not a suitable plant growing medium. Taken together, our results suggested that CJB or WB can partially replace peat moss as a growing medium for cabbage or tomato seedlings, however, due to its low level of nutrient contents and high pH value, it can not completely replace peat moss. Nonetheless, it can at least reduce the amount of peat moss used in vegetable transplant growth and therefore improve utilization of agricultural wastes.
生物炭(biochar)是指生物質在缺氧或低氧環境下經過高溫裂解後產生的穩定且富含碳元素的固體產物。本研究調查柳杉生物炭(CJB)及行道樹生物炭(WB)的理化特性,探究其與泥炭土混合之介質是否可供作甘藍與番茄作物育苗之用,並建立生物炭混合介質用於育苗時之養分管理模式。介質原料之化學性質中,CJB及WB之酸鹼度皆偏鹼性,且生物炭之電導度較低,其中又以CJB為最低。營養元素分析分面,生物炭肥份較低,其中又以CJB為最低。物理性質中粒徑分析之小顆粒比例以泥炭所占最高,粗顆粒以生物炭為較高。 種子於不同介質中之發芽試驗顯示,甘藍與番茄種子於泥炭土、柳杉生物炭、行道樹生物炭之發芽率達85%以上,顯示柳杉與行道樹生物炭對甘藍與番茄種子發芽並無抑制作用。甘藍育苗試驗中,柳杉生物炭混合介質所培育幼苗之狀苗指數與絕對生長速率與泥炭土相較皆無顯著差異,行道樹混合介質所培育幼苗之狀苗指數一、二及三與泥炭土相較亦無顯著差異,顯示柳杉生物炭與行道樹生物炭可取代50%泥炭土作為甘藍育苗介質之用。番茄育苗試驗中,柳杉生物炭混合介質所培育幼苗之結果顯示CJB25處理在大多數幼苗性狀之表現皆顯著高於泥炭土且為各處理中之冠,其餘各處理之幼苗性狀與泥炭土相較均無顯著差異。另一方面,行道樹生物炭混合介質所培育幼苗之狀苗指數與絕對生長速率與泥炭土相較亦均無顯著差異,顯示柳杉生物炭與行道樹生物炭均可取代50%泥炭土作為適合番茄育苗之介質,其中又以柳杉生物炭取代泥炭土之比例為25%時為最好之番茄育苗介質。 柳杉生物炭搭配養液應用於甘藍及番茄之育苗試驗中,使用商用泥炭土或泥炭土混合50%以內柳杉生物炭並搭配Hoagland養液進行甘藍育苗時,維持每五天澆灌一次養液即可,然而混合柳杉生物炭比例達75%時,則須維持每三天澆灌一次養液較為適宜。番茄育苗搭配施用山崎氏之番茄養液時,發現使用商用泥炭土亦維持每五天澆灌一次養液即可。混合50%以內體積比例之柳杉生物炭時,每五天澆灌一次養液雖番茄苗品質略差,但較無徒長現象,若每三天澆灌一次養液,其品質則較佳。然而混合達75%生物炭時,則須維持每三天內澆灌一次養液較為適宜。 柳杉生物炭與番茄快速堆肥(TF)的混合介質試驗結果顯示。介質之化學性質中,TF電導度高達1.73 dS/m,且各營養元素大多以TF最高。然而在發芽試驗中,番茄快速堆肥中之甘藍發芽率僅23.33%,甚至番茄種子之發芽率為0%,顯示番茄快速堆肥會抑制甘藍與番茄種子發芽。育苗試驗結果顯示PBT1 混合介質為較適合甘藍及番茄育苗之介質,其次為PBT2,而PBT3 則較不適合。由於番茄快速堆肥具有高含量之酚類及可溶性鹽類,其較不適宜單獨作為育苗介質使用,且混合比例不宜過高。 綜合上述各試驗結果,柳杉生物炭與行道樹生物炭應用於甘藍及番茄之育苗介質是可行的,但礙於其肥份低、偏鹼性等原因雖不能完全取代泥炭土,但能減少泥炭土用量,提高將農業廢棄物製成生物炭應用之價值。
URI: http://hdl.handle.net/11455/89199
其他識別: U0005-0708201511173800
文章公開時間: 2018-08-12
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.