Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89201
標題: 番荔枝科花苞位置之探討及日長和葉片數對鳳梨釋迦開花之影響
Study of Flower Bud Position of Annonaceae and the Effects of Day Length and Leaf Number on Flowering of Atemoya (Annona cherimola x Annona squamosa)
作者: Pei-Ju Lin
林沛儒
關鍵字: 
no
引用: 吳政營。2008。'玉荷包'荔枝樹體碳氮比之季節性變化。國立屏東科技大學農園生產系碩士論文。臺灣:屏東。106pp. 林嘉興、張林仁。1994。遮光處理對枇杷產期及品質之影響。枇杷生產技術。pp.117-126。 林鴻淇。1990。果樹無機養分的吸收及運移。果樹營養與果園土壤管理研討會專集。pp. 1-10。 周靖凱、楊耀祥、張致盛。2008。修剪對鳳梨釋迦新梢生長及開花之影響。臺灣園藝 54(1): 35-45。 邱祝櫻、翁仁憲。2003。夜間間歇照光對印度棗生育之影響。行政院農業委員會高雄區農業改良場研究彙報 14(2): 1-9。 邱禮弘、陳榮五。2004。中部地區紅龍果冬期果產期調節之研究。臺中區農業專訊 44: 23-27。 張育森、鄭正勇。1992。百香果光週性之研究。中國園藝 38: 63-71。 張則周。2011。植物營養學。五南圖書出版股份有限公司。臺灣:臺北。524pp. 張致盛。2004。中部地區鳳梨釋迦產期調節技術。台中區農情月刊 56。 許偉東、鄭誠樂、吳憲志、鄭碧海。2009。楊梅花芽生理分化期葉片碳氮含量動態變化。福建熱作科技 4:18-20。 張繼中、李惠鈴、廖勁穎、黃文益。2014。鳳梨釋迦植株黃化改善研究。臺東區農業專訓 88:13-15。 陳右人。1981。檬果樹體碳水化合物與氮含量之週年變化。台灣大學園藝學研究所碩士論文。75pp. 陳俞妙、吳和枝、黃子彬、劉景平、沈再木。2009。全夜照明對水稻、菱角及印度棗生長之影響。作物、環境與生物資訊 2(3): 182-192。 楊正山。1997。臺灣農家要覽-番荔枝·鳳梨釋迦。行政院農委會編印。臺灣:臺北。pp. 81-92。 蔡美芳。2008。遮光及環刻處理對蓮霧開花和碳氮比之影響。國立屏東科技大學農園生產系碩士論文。臺灣:屏東。119pp. 蔡淑華。1972。植物解剖學。國立編譯館。臺灣:臺北。pp. 256-271。 盧柏松、江淑雯。2011。暗期中斷處理對番荔枝冬期果開花及果實品質之影響。 臺東區農業改良場 100 年試驗研究推廣成果研討會專刊。pp. 45~50。 盧柏松、江淑雯。2013。番荔枝屬優良地方品系介紹。臺東區農業專訊 84: 2-7。 盧柏松、江淑雯、林永順、曾得洲、黃政龍、張繼中、黃德昌、許昌慈、謝進來。 2010。整枝修剪與產期調節。番荔枝生產管理手冊。pp. 5-11。 盧柏松、黃明得、邱禮弘。1999。開花期遮光處理對枇杷產期及果實品質之影響。 臺東區農業改良場研究彙報 10: 15~26。 顏昌瑞。2005。臺灣農家要覽-紅龍果。行政院農業委員會臺灣農家要覽增修訂三版策劃委員。臺灣:臺北。pp. 173-176。 Acuna, P.E. 1992. Approximation to the period of floral bud differentiation and description of cherimoya (Annona cherimola Mill) cv. Concha Lisa for Quillota area. Chile Catholic Univ. Valparaiso. 76pp. Campbell, C. W. and R. L. Phillips. 1994. The atemoya. Florida Coop. Ext. Fact Sheet. 3pp. Corbesier, L., G. Bernier, and C. Perilleux. 2002. C:N ratio increases in the phloem sap during floral transition of the long-day plants Sinapis alba and Arabidopsis thaliana. Plant Cell Physiol. 43(6): 684-688. Cunniff, P. 1995. Official methods of analysis of AOAC international (16th edition). Aoac Intl publisher.1141pp. Davenport, T. L., Z. Ying, V. Kulkarni, and T. L. White. 2006. Evidence for a trans locatable florigenic promoter in mango. Scientia Hort. 110: 150-159. Dias, N. O., S. N. Matsumoto, T. N. H. Reboucas, A.E. S. Viana, A. R. S. Jose, and I. V. B. Souza. 2003. The influence of pruning on branches of different diameter in the vegetative and reproductive growth of sugar apple (Annona squamosa L.). Revista Brasileira Fruticltura 25(1): 100-103. Dickson, R. E. 1989. Carbon and nitrogen allocation in trees. Ann. Sci. Forest 46: 631-647. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3):350-356. Fouad, M.M., S.M. Mohamed, and I.E. Ghonaim. 1999. Effect of chemical defoliants on leaf defoliation and flower bud differentiation of some Annona cherimola cultivars. Bul. Faculty Agr. 50: 245–264. Geroge, A. P. and R. J. Nissen. 1987. The effects of day/night temperature on growth and dry matter production of custard apple 'African Pride'. Scientia Hort. 31:95-99. Geroge, A. P. and R. J. Nissen. 1988. The effects of temperature, vapour pressure deficit and soil moisture stress on growth flowering and fruit set of custard apple (Annona cherimola x Annona squamosa) 'African Pride'. Scientia Hort. 34:183-191. Hicks, P. A. 2006. Distribution of carbon/nitrogen ratio in the various organs of the wheat plant at different periods of its life history. New Phytologist 27(2): 108-116. Higuchi, H. and N. Utsunomiya. 1999. Floral differentiation and development in cherimoya Annona cherimola Mill.) under warm (30/25℃) and cool (20/15℃) day/night temperatures. J. Jpn. Soc. Hort. Sci. 68(4): 707–716. Higuchi, H., N. Utsunomiya, and T. Sakuratani. 1998. High temperature effects on cherimoya fruit set, growth and development under greenhouse conditions. Scientia Hort. 77: 23-31. Iglesias, D. J., I. Lliso, F. R. Tadeo, and M. Talon. 2002. Regulation of photosynthesis through source: sink imbalance in citrus in mediates by carbohydrate content in leaves. Physiologia plantarum 116: 563-572. Jiang, Y. L., Y. Y. Liao, T. S. Lin, and C. L. Lee. 2012. The photoperiod-regulated bud formation of red pitaya (Hylocereus sp.). Hortscience 47(8): 1063-1067. Luis, A. G., F. Fornes, and J. L. Guardiola. 1995. Leaf carbohydrates and flower formation in citrus. J. Amer. Soc. Hort. Sci. 120(2): 222-227. Nelson, D. W., and L. E. Sommer. 1982. Total carbon, prganic carbon, and organic matter. Method of soil analysis (second edition). Amer. Soc. Agron. Inc. publisher. pp. 539-577. Olesen, T., D. Robertson, S. Muldoon, and R. Meyer. 2008. The role of carbohydrate reserves in evergreen tree development, with particular reference to macadamia. Scientia Hort. 117: 73-77. Olesen, T. and S. J. Muldoon. 2009. Branch development in custard apple (cherimoya Annona cherimola Miller x sugar apple A. squamosa L.) in relation to tip-pruning and flowering, including effects on production. Trees 23: 855-862. Olesen, T. and S. J. Muldoon. 2012. Effects of defoliation on flower development in atemoya custard apple (Annona cherimola Mill. x. squamosa L.) and implications for flower-development modelling. Aust. J. Bot. 60: 160-164. Razeto M., B. and E. D. de Valdes I. 2000. Forced production of cherimoya (Annona cherimola Mill.) by defoliation and pruning of shoots. Agricultura Tecnica 60(2):173-177. Ramirez, F., T. L. Davenport, and G. Fischer. 2010. The number of leaves required for floral induction and translocation of the florigenic promoter in mango (Mangifera indica L.) in a tropical climate. Scientia Hort. 123: 443-453. Sanz, A., C. Monerri, J. G. Ferrer, and J. L. Guardiola. 1987. Changes in carbohydrates and mineral element in Citrus leaves during flowering and fruit set. Physiologia Plantarum 69: 93-98. Simpson, M. G. 2010. Plant Systematics. Academic press. 752pp. Soler, L. and J. Cuevas. 2008. Development of a new technique to produce winter cherimoyas. Horttechnology 18(1): 24-28. Soler, L. and J. Cuevas. 2009. Early flower initiation allows ample manipulation of flowering time in cherimoya (Annona cherimola Mill.). Scientia Hort. 121:327-332. Taiz, L. and E. Zeiger. 2010. Plant Physiology (Fifth edition). Sinauer associates Inc. publisher. 637pp. Urban, L., X. L. Roux, H. Sinoquet, S. Jaffuel, and M. Jannoyer. 2003. A biochemical model of photosynthesis for mango leaves: evidence for the effect of fruit on photosynthetic capacity of nearby leaves. Tree Physiol. 23: 289-300. Urban, L., P. Lu, and R. Thibaud. 2004. Inhibitory effect of flowering and early fruit growth on leaf photosynthesis in mango. Tree Physiol. 24: 387-399. Walters, D. R. and D. J. Keil. 1996. Vascular Plant Taxonomy (fourth edition). Kendall Hunt publisher. 608pp. Wurth, M. K. R., S. P. Riedl, S. J. Wright, and C. Korner. 2005. Non-structural carbohydrate pools in a tropical forest. Oecologia 143: 11-24.
摘要: Textbook descriptions of Annonaceae state that it produces a lateral flower bud, but careful observation shows Annonaceae buds to be not located in the leaf axil. The first experiment investigated the position of Annonaceae flower bud. For the second experiment, there was a paper suggesting that percentage of floral buds of sugar apple increased under night break treatment in autumn and winter. It suggested that sugar apple may be a long-day plant. However, the second experiment used the opposite approach with short-day treatment during September and October to confirm the effects of day length upon flowering. The purpose of the third experiment was to see if the number of leaves present would affect flowering of Annona buds. The external appearance observation and internal pattern of the Annona flower bud was observed in 'si-lin' sugar apple, 'purple' sugar apple and atemoya to determine the position of the bud. The results showed that the flower buds of atemoya and sugar apple weren't located in the leaf axils. The node flower lied was different from leaves. Additionally, vegetative bud lay between flower bud and leaf, similar to axillary bud. It was also observed in 'purple' sugar apple that flower initiation occurred in terminal buds. Annonaceae flower buds can be inferred as terminal buds rather than lateral buds. After flower initiation occurs, shoot stops growing. Without apical dominance axillary bud sprouts and quickly takes the position of terminal bud. In light period experiment, Atemoya was tip-pruned; the top two leaves were removed, then under went 100% shading for a seven or nine hour day length. Selected branches were stripped of all leaves and girdled to eliminate its capacity to accept light. The results showed that short-day treatment didn't obviously affect the first day of flower budding, the percentage of floral buds, number of flowers per branch or number of flowers per bud of atemoya. It only made number of flower per plant of atemoya decrease. The percentage of floral buds and number of flowers per bud of branches without leaves were lower during the late stage of treatment. Overall, Atemoya plant can blossom under short-day and leafless conditions. It may be insensitive to photoperiodic. Thirdly to determine the effect of the number of leaves on atemoya flowering, the atemoya plants was tip-pruned, the top two leaves of each branch were removed. One, two, three or four leaves were left on each branch, and then girdled below. Branches with one and two leaf treatment sprouted earlier than other treatments, and had highest percentage of floral buds at an early stage, but branches with one and two leaf treatment experienced serious flower drop in the later stages. Thirty-three days after treatment, branches with three leaves had highest percentage of floral buds. In contrast, branches with one leaf had the lowest percentage of floral buds and number of flowers per bud. Branches with three leaves are better for flower development. Finally, though branches with one or two leaves still blossom, flowers of those treatments have severe drop off.
教科書中對番荔枝科花之敘述皆為側芽,但經觀察可發現其位置不在葉腋上,本試驗第一部份便在探討番荔枝科作物花苞位置。另外,有文獻指出番荔枝於秋冬季實施暗期中斷,可顯著提升開花率。根據上述研究結果,番荔枝可能為長日開花作物,本試驗第二部分乃利用反證方式,於 9 月及 10 月以遮陰方式進行短日處理,探討日長對鳳梨釋迦開花之影響。第三個部分則在調查葉片數對鳳梨釋迦開花之影響,以釐清供源與開花之相關性。 由外觀及芽內部型態觀察'細鱗種'、'紫色種'番荔枝及鳳梨釋迦之花苞位置。結果顯示 3 種番荔枝科作物之花苞位置不位於葉腋,不與葉片在同樣節位上,反而是營養芽位於類似腋芽之位置。另外,部分'紫色種'番荔枝芽體頂端因分化花芽而停止生長枝葉。推測番荔枝科花實為頂芽而非側芽,當芽體頂端分化形成花芽後,即停止生長,在無頂芽優勢下,腋芽抽出、快速生長並取代頂芽位置。 鳳梨釋迦經去頂和摘除頂端 2 葉後 利用 100%遮光處理短日 7 及 9 小時日長,,挑選部分枝條全部除葉,並於基部環剝,調查後續開花情形。結果顯示,短日處理對鳳梨釋迦花苞萌出時間、花芽率、枝條平均花數及每芽花數等開花表現皆無顯著影響,僅全株總花數會下降。除葉枝條仍會開花,但後期開花率和每芽花數會顯著較低。整體而言,短日和除葉處理鳳梨釋迦仍可開花,顯示鳳梨釋迦對光週期不敏感。 鳳梨釋迦經去頂除葉後,留 1、2、3 及 4 葉片,並於基部環剝。以 1 片及 2片葉枝條最早有花苞萌出,且於處理初期有較高之花芽率,但後期嚴重落花導致花芽率持續下降。處理後第 33 天,以留 3 葉枝條有最高之花芽率,留 1 片葉枝條花芽率和每芽花數皆最低,可得知枝條留 3 片葉較有利於後期花之發育,留 1 或 2片葉仍可開花,但落花嚴重。
URI: http://hdl.handle.net/11455/89201
其他識別: U0005-0406201516583700
文章公開時間: 2018-07-15
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.