Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89208
標題: 纖維分解菌之篩選及利用於農業副產物堆肥化之研究
Study on screening of cellulose-decomposing microbial and inoculating on agricultural wastes compost
作者: Ling-Ting Huang
黃麟婷
關鍵字: 纖維分解菌
農業廢棄物
堆肥
cellulose-decomposing microbial
agricultural wastes
compost
引用: 王西華。1989。農業廢棄物在有機農業之利用。有機農業研討會專集。p. 217-227。 台灣省政府農林廳。1999。蔬菜病蟲害綜合防治專輯。台灣省政府農林廳。436pp. 江志峰、王鐘和、黃維廷、簡宣裕。2002。堆肥液在有機果菜栽培之應用。農業試驗所特刊102:131-140。 李哖。1988。育苗介質與施肥。園藝種苗產銷技術研討會專集。p. l88-202。 林景和、林天枝。1993。菇類栽培太空包廢渣之再利用研究—堆肥製作研究。土壤肥料試驗報告。p. 168-177。 林財旺、簡宣裕。1995。農畜產廢棄物之處理及利用現況。台灣省農業試驗所特刊50:43-58。 孫文章。1994。本土化栽培介質之開發與改良研究(上)。台南區農業專訊7:15-17。 徐永豔。2002。我國無土栽培發展的動態研究。雲南林業科技3:90-94。 秦臻、蔡素梅、黃鈞、周榮清。2011。一株產生澱粉分解酶犁頭黴的分離鑒定及其酶學性質。微生物學通報38(5):729-735。 陳建堯、曹鈺、謝廣發、陸健。2008。黃酒機械成型麥曲制曲過程中真菌動態變化的研究。食品與發酵工業8:42-47。 郭魁士。1978。土壤學。中國書局。台北。801pp. 郭福成。1998。蔗渣改善處理對小白菜生產及土壤之影響研究。國立中興大學土壤環境科學系碩士論文。台中。 張霞、武志芳、張勝潮、胡承、張文學。2011。貴州濃香型白酒大麯中黴菌的18S rDNA 系統發育分析。應用與環境生物學報17(03):334-337。 莊作權。1997。土壤肥料。三民書局股份有限公司。台北。362pp. 許韻聲。2011。胡瓜'夏笛'無土有機栽培技術之研究。國立中興大學園藝學系碩士論文。台中。 黃泮宮、薛佑光、李美娟。1989。蔬菜穴盤育苗技術。農民淺說五○七-特產○四五。台灣省政府農林廳編印。 黃振文、彭玉湘。2008。利用農業廢棄物研發抑病介質與有機添加物。節能減碳與作物病害管理研討會專刊127-136。 葛曉光。1987。果菜壯苗指標研究的概況。中國蔬菜(1):32-44。 經濟部工業局。2005。堆肥技術與設備手冊及案例彙編。經濟部工業局。 鄧正賢。2012。建立安全有效神麴發酵製程最佳化的研究。中醫藥年報(光碟版)第一期第十冊。 鄧輝、王成、呂豪豪、王飛兒、屠巧萍、吳偉祥。2013。堆肥過程放線菌演替及其木質纖維素降解研究進展。應用與環境生物學報 19(4):581-586。 蔡宜峰。1996。本土化有機介質應用於木瓜育苗之研究(一)對木瓜幼苗生長之影響。臺中區農業改良場研究彙報50:53-59。 蔡宜峰。1996。本土化有機介質應用於木瓜育苗之研究(二)對木瓜幼苗植株無機養分含量之影響。臺中區農業改良場研究彙報51:1-7。 蔡宜峰、高德錚。2002。本土化蔬果有機介質配方之開發。台中區農業專訊38: 4-11。 戴振洋。2009。設施番茄介質耕栽培技術。台中區農業技術專刊173。 謝廣發、李旺軍、方華、曹鈺、陸健、胡志明、鄒慧君。2008。紹興黃酒麥曲中真菌組成結構的研究。食品科學29(3):277-282。 簡宣裕、莊作權。1997。廢棄香菇木屑堆肥研製及對小白菜之肥效。中華農業研究 46(1):70-81。 簡宣裕、張明暉、劉禎祺。2005。堆肥品質之判斷。農業試驗所特刊121: 279-288。 Abad, M., P. Noguera, and S. Bures. 2001. National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresource Technol. 77:197-200. Adhikari, B. K., S. Barrington, J. Martinez, and S. King. 2008. Characterization of food waste and bulking agent for composting. Waste Manage. 28:795-804. Agnolucci, M., C. Cristani, F. Battini, M. Palla, R. Cardelli, A. Saviozzi, and M. Nuti. 2013. Microbially-enhanced composting of olive mill solid waste (wet husk): bacterial and fungal community dynamics at industrial pilot and farm level. Bioresource Technol. 134:10-16. Ait Baddi, G., J. Cegarra, G. Merlina, J. C. Revel, and M. Hafidi. 2009. Qualitative and quantitative evolution of polyphenolic compounds during composting of an olive-mill waste-WS mixture. J. Hazard. Mater. 165:1119-1123. Albrecht, R., C. Périssol, F. Ruaudel, J. L. Petit, and G. Terrom. 2010. Functional changes in culturable microbial communities during a co-composting process: Carbon source utilization and co-metabolism. Waste Manage 30:764-770. Alfano, G., C. Belli, G. Lustrato, and G. Ranalli. 2008. Pile composting of two-phase centrifuged olive husk residues: technical solutions and quality of cured compost. Bioresource Technol. 99:4694-4701. Baik, S. H., K. Saito, A. Yokota, K. Asano, and F. Tomita. 2009. Molecular cloning and high-level expression in Escherichia coli of fungal alpha-galactosidase from Absidia corymbifera. J. Biosci. Bioeng. 90(2):168-173. Barrows, H. L. and V. J. Kilmer. 1963. Plant nutrient losses from soil by water erosion. Adv. Agron. 15:303-316. Beardsell, D. V., D. G. Nichols, and D. L. Jones. 1979a. Physical properties of nursery potting-mixtures. Scientia Hort. 11:1-8. Beardsell, D. V., D. G. Nichols, and D. L. Jones. 1979b. Water relations of nursery potting-media. Scientia Hort. 11:9-17. Beck-Friis, B., S. Smårs, H. Jönsson, and H. Kirchmann. 2001. Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. J. Agric. Eng. Res. 78:423-430. Beguin, P. 1987. Cloning of cellulase gene. Crit. Rev. Biotechnol. 6:129-162. Beguin, P. and J. P. Aubert. 1992a. La de'gradation de la cellulose parles microorganisms. Amm. Inst. Pasteur/Actualit'es 3:91-115. Benito, M., A. Masaguer, A. Moliner, N. Arrigo, and R. M. Palma. 2003. Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost. Biol. Fertil. Soils. 37:184-189. Bernal, M. P., J. M. Lopez-Real, and K. M. Scott. 1993. Application of natural zeolites for the reduction of ammonia emissions during the composting of organic wastes in a composting simulator. Bioresour. Technol. 43:35-39. Bernal, M. P., J. A. Alburquerque, and R. Moral. 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technol. 100:5444-5453. Bisaria, V. S. and T. K. Ghose. 1981. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enz. Microb. Technol. 3:90-104. Bishop, P. L. and C. Godfrey. 1983. Nitrogen transformations during sludge composting. BioCycle 24:34-39. Bustamante, M. A., C. Paredes, R. Moral, E. Agulló, M. D. Pérez-Murcia, and M. Abad. 2008. Composts from distillery wastes as peat substitutes for transplant production. Resource Conserv. Recy. 52:792-799. Cayuela, M. L., M. P. Bernal, and A. Roig. 2004. Composting olive mill waste and sheep manure for orchard use. Compost Sci. Util. 12:130-136. Chang, J. I., J. J. Tsai, and K. H. Wu. 2005. Mathematical model for carbon dioxide evolution from the thermophilic composting of synthetic food wastes made of dog food. Waste Manage. 25:1037-1045. Chen, Y. and Y. Inbar. 1993. Chemical and spectroscopical analysis of organic matter transformations during composting in relation to compost maturity. In: Science and engineering of composting: Design Environmental, Microbiological and Utilization Aspects, H. A. J. Hoitink and H. M. Keener (eds.), Renaissance Publication, Worthington, OH, USA. p. 551-600. Chen,Y., H. Magen, and J. Riov. 1994. Humic substances originating from rapidly decomposing organic matter: properties and effects on plant growth. In: Humic substances in the global environment and implications on human health, N. Senesi and T. M. Miano (Eds.), Elsevier, New York. p. 427-443. Conghos, M. M., M. E. Aguirre, and R. M. Santamaria. 2003. Biodegradation of sunflower hulls with different nitrogen sources under mesophilic and thermophilic incubations. Biol. Fert. Soils 38:282-287. Cooperband, L. 2002. The art and science of composting: a resource for farmers and compost producers. University of Wisconsin-Madison. 14pp. De Bertoldi, M., G. Vallini, and A. Pera. 1983. The biology of composting: a review. Waste Manage Res. 1:157-176. De Bertoldi, M., G. Vallint, A. Pera, and F. Zucconi. 1985. Technological aspects of composting including modeling and microbiology. In: Composting of agricultural and other wastes, J. K. R. Gasser (eds.), Elsevier Applied Science, London, UK, p. 27-40. De Boodt, M. and O. Verdonck. 1972. The physical properties of the substrates in horticulture. Acta Hort. 26:37-44. Diaz, L. F., M. De Bertoldi, and W. Bidlingmaier. 2007. Compost Science and Technology. Elsevier Science. Amsterdam. 380pp. Eklind, Y., B. Ramert, and M. Wivstad. 2001. Evaluation of growing media containing farmyard manure compost, household waste compost or chicken manure for the propagation of lettuce (Lactuca sativa L.) transplants. Biol. Agric. Hortic. 19:157-181. Epstein, E. 1997. The Science of Composting. CRC Press LLC, Florida, USA. 83pp. Fang, M., J. W. Wong, K. K. Ma, and M. H. Wong. 1999. Co-composting of sewage sludge and coal fly ash: nutrient transformations . Bioresource Technol. 67:19-24. Federici, E., M. Pepi, A. Esposito, S. Scargetta, L. Fidati, S. Gasperini, G. Cenci, and R. Altieri. 2011. Two-phase olive mill waste composting: community dynamics and functional role of the resident microbiota. Bioresource Technol. 102:10965-10972. Finstein, M. S., F. C. Miller, S. T. MacGregor, and K. M. Psarianos. 1985. The Rutgers Strategy for Composting: Process Design and Control. Project Summary (EPA 600/S2-85/059) EPA, Washington. 7pp. Fonteno, W. C. and P. V. Nelson. 1990. Physical properties of and plant response to rockwoolamended media. J. Amer. Soc. Hort. Sci. 115(3):375-381. Foth, H. D. and B. G. Ellis. 1988. Soil and fertilizer phosphorus. In: Soil fertility, John Wiley and Sons Inc., New York. p. 88-110. Fraser, L. H. and P. A. Keddy. 2005. The World's Largest Wetlands: Ecology and Conservation. Cambridge University Press, Cambridge, UK. 488pp. Furukawa, Y., K. Inubushi, M. Ali, A. M. Itang, and H. Tsuruta. 2005. Effect of changing groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat lands. Nutr. Cycl. Agroecosys 71(1):81-91. Gajalakshmi, S. and S. A. Abbasi. 2008. Solid waste management by composting: state of the art. Crit. Rev. Env. Sci. Tec. 38:311-400. Garcia-Gomez, A., M. P. Bernal, and A. Roig. 2002. Growth of ornamental plants in two composts prepared from agroindustrial wastes. Bioresource Technol. 83:81-87. Golueke, C. G. 1991. Principles of composting. In: The Biocycle Guide to the Art and Science of Composting, The JG Press Inc., Pennsylvania, USA. p. 14-27. Goyal, S., S. K. Dhull, and K. K. Kapoor. 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technol. 96:1584-1591. Grigatti, M., M. E. Giorgioni, and C. Ciavatta. 2007. Compost-based growing media: influence on growth and nutrient use of bedding plants. Bioresource Technol. 98:3526-3534. Haga, K. 1990. Production of compost from organic wastes. ASPAC/FFTC Extension Bulletin 311:1-18. Haider, K. 1994. Advances in the basic research of the biochemistry of humic substances. In: Humic substances in the global environment and implications on human health, N. Senesi, T. M. Miano (Eds.), Elsevier, New York. p. 91-107. Harada. Y. 1990. Composting and application of animal wastes. ASPAC/FFTC Extension Bulletin 311:19-31. Hoitink, H. A. J. 1980. Composted bark, a light weight growth medium with fungicidal properties. Plant Dis. 64:142-147. Honeycutt, C. W., L. J. Potaro, K. L. Avila, and W. A. Halteman. 1993. Residue quality, loading rate and soil temperature relations with hairy vetch (Vicia villosa Roth) residue carbon, nitrogen and phosphorus mineralization. Biol. Agric. Horti. 9:181-199. Huang, H. L., G. M. Zeng, G. H. Huang, and H. Y. Yu. 2004. Current study on the effect of lignolytic organisms on humus formation in composting. China Biotechnol. 24:29-31. Hue, N. V. and J. Liu. 1995. Predicting compost stability. Compost Sci. Utili. 3:8-15. Ichida, J. M., L. Krizova, C. A. LeFevre, H. M. Keener, D. L. Elwell, and E. H. Burtt Jr. 2001. Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. J. Microbiol. Meth. 47(2):199-208. Inoko, A. 1982. The composting of organic materials and associated maturity problems. ASPAC/FFTC Food & Fertiliser Technology Center, Technical Bulletin 71:1-20. Iqbal, K. M., T. Shafiq, and K. Ahmed. 2010. Characterization of bulking agents and its effects on physical properties of compost. Bioresour. Technol. 101:1913-1919. Jenkins, J. R. and W. M. Jarrell. 1989. Predicting physical and chemical properties of container mixtures. HortScience 24(2):292-295. Jeris, J. S. and R.W. Regan. 1973. Controlling environmental parameters for optimum composting II: Moisture, free air space and recycle. Compost Sci. 14:8-15. Jiang, T., F. Schuchardt, G. X. Li, R. Guo, and Y. Q. Zhao. 2011. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. J. Environ. Sci. 23:1754-1760. Jiang, T., F. Schuchardt, G. X. Li, R. Guo, and Y. M. Luo. 2013. Gaseous emission during the composting of pig feces from Chinese Ganqinfen system. Chemosphere 90:1545-1551. Jokela, W. E. 1992. Nitrogen fertilizer and dairy manure effects on corn yield and soil nitrate. Soil Sci. Soc. Am. J. 56: 148-154. Jouraiphy, A., S. Amir, M. E. Gharous, J. C. Revel, and M. Hafidi. 2005. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. Int. Biodeter. Biodegr. 56:101-108. Keener, H. M., W. A. Dick, and H. A. J. Hoitink. 2000. Composting and beneficial utilization of composted by-product materials. In: Land application of agricultural, industrial, and municipal by products, W. A. Dick (Ed.), Soil Science Society of America Inc., Madison. p. 315-341. Komilis, D. P., R. K. Ham, and J. K. Park. 2004. Emission of volatile organic compounds during composting of municipal solid wastes. Water Res. 38:1707-1714. Li, Z., H. Lu, L. Ren, and L. He. 2013. Experimental and modeling approaches for food waste composting: A review. Chemosphere 93(7):1247-1257. Liu, J., X. H. Xu, , H. T. Li, and Y. Xu. 2011. Effect of microbiological inocula on chemical and physical properties and microbial community of cow manure compost. Biomass Bioenerg. 35:3433-3439. Lohr, V. I., R. G. O'Brien, and D. L. Coffey. 1984a. Spent mushroom compost in soilless media and its effect on the yield and quality of transplants. J. Amer. Soc. Hort. Sci. 109:693-697. Lucas, R. E. and J. F. Davis. 1961. Relationship between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci. 92:177-182. Mandels, M. and E. T. Reese. 1957. Induction of cellulase in fungi by cellobiose. J. Bacteriol. 73:816- 826. Medina, E., C. Paredes, M. D. Pérez-Murcia, M. A. Bustamante, and R. Moral. 2009. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol. 100: 4227-4232. Mickinley, V. L. and J. R. Vestal. 1985. Microbial activity in composting. Biocycle 26:39-43. Miller, F. C. 1992. Composting as a process based on the control of ecologically selective factors. In: Soil microbial ecology: applications in agricultural and environmental management, F. B. J. Metting (Ed.), Marcel Dekker Inc., New York. p. 515-544. Müller, M. M., V. Sundman, O. Soininvaara, and A. Meriläineu. 1988. Effect of composition on the release of nitrogen from agricultural plant materials decomposition in soil under field conditions. Biol. Fertil. Soils 6:78-83. Nakai, Y., M. Satoh, and S. Wakase. 2004. Recent topics of animal health and management. Tohoku J. Agric. Res. 55:31-38. Nakasaki, K., H. Yaguchi, Y. Sasaki, and H. Kubota. 1993. Effects of pH control on composting of garbage. Waste Manage. Res. 11:117-125. Nakasaki, K., N. Aoki, and H. Kubota. 1994. Accelerated composting of grass clippings by controlling moisture level. Waste Manage. Res. 12:12-20. Nelson, A. J. and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter. In: Methods of Soil Analysis. Part 2. 2nd. Ed, A. L. Page, R. H. Miller, D. T. Keeney (eds.), SSSA and ASA Press, Madison, WI, USA. p. 539-579. Nelson, P. V. 1991. Greenhouse Operation Management. Prentice-Hall, Englewood Cliffs, New Jersey, USA. 612pp. Ostos, J. C., R. López-Garrido, J. M. Murillo, and R. López. 2008. Substitution of peat for municipal solid waste-and sewage sludge-based composts in nursery growing media: Effects on growth and nutrition of the native shrub Pistacia lentiscus L. Bioresource Technol. 99:1793-1800. Papafotiou, M., M. Phsyhalou, G. Kargas, I. Chatzipavlidis, and J. Chronopoulos. 2004. Olive-mill wastes compost as growing medium component for the production of poinsettia. Sci. Hortic. 102:167-175. Paul, J. L. and C. I. Lee. 1976. Relation between growth of chrysynthemum and aeration of various media. J. Amer. Soc. Hort. Sci. 101:500-503. Perez-Murcia, M. D., R. Moral, J. Moreno-Caselles, A. Perez-Espinosa, and C. Paredes. 2006. Use of composted sewage sludge in growth media for broccoli. Bioresource Technol. 97:123-130. Prasad, M. 1980. Retention of nutrients by peats and wood wastes. Scientia Hort. 12:203-209. Puustjarvi, V. and R. A. Robertson. 1975. Physical and chemical properties. In: Peat in horticulture, D. W. Robinson and J. G. D. Lamb (eds.), Academic Press, New York. p. 23-38. Rasapoor, M., T. Nasrabadi, M. Kamali, and H. Hoveidi. 2009. The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Manage. 29:570-573. Raut, M. P., S. P. M. Prince William, J. K. Bhattacharyya, T. Chakrabarti, and S. Devotta. 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste – A compost maturity analysis perspective. Bioresource Technol. 99:6512-6519. Richards D., M. Lane, and D. V. Beardsell. 1986. The influence of particle-size distribution in pinebark:sand:brown coal potting mixes on water supply, aeration and plant growth. Sci. Hort. 29:1-14. Rynk, R. 1992. On-farm composting handbook. NRAES-54. 186pp. Sasaki, N., K. I. Suehara, J. Kohda, Y. Nakano, and T. Yano. 2003. Effects of C/N ratio and pH of raw materials on oil degradation efficiency in a compost fermentation process. J. Biosci. Bioeng. 96:47-52. Sasaki, H., O. Kitazume, J. Nonaka, K. Hikosaka, K. Otawa, and K. Itoh. 2006. Effect of a commercial microbiological additive on the beef manure compost in the composting process. Anim. Sci. J. 77:545-548. Sánchez-Monedero, M. A., A. Roig, J. Cegarra, M. P. Bernal, P. Noguera, M. Abad, and A. Antón. 2004. Composts as media constituens for vegetable transplant production. Compost Sci. Util. 12:161-168. Schaller, G. 1987. pH changes in the rhizosphere in relation to the pH-buffering of soils. Plant and Soil 97: 439-444. Senesi, N. 1989. Composted materials as organic fertilizers. Sci. Total Environ. 81:521-542. Singh, Y. P. and C. P. Singh. 1986a. Effect of different carbonaceous compound on the transformation of soil nutrients. Ⅰ. Immobilization and mineralization of applied nitrogen. Biol. Agric. Horti. 4:19-26. Singh, Y. P. and C. P. Singh. 1986b. Effect of different carbonaceous compound on the transformation of soil nutrients. Ⅱ. Immobilization and mineralization of applied phosphorus. Biol. Agric. Horti. 4:301-307. Sharon, Z. N., O. Markovitch, J. Tarchitzky, and Y. Chen. 2005. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol. Biochem. 37:2109-2116. Stevenson, F. J. 1986. Cycles of Soil. Carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley and Sons Inc., 448pp. Stoddart, J. F. 1971. Stereochemistry of carbohydrates. Wiley-Interscience, New York, USA. 112pp. Tang, Y. L, R. C. Wang, and J. F. Huang. 2004. Relations between red edge characteristics and agronomic parameters of crops. Pedosphere 14(4):467-474. Tiquia, S. M. 2002. Evolution of extracellular enzyme activities during manure composting. J. Appl. Microbiol. 92:764-775. Wang, H. S., V. I. Lohr, and D. L. Coffey. 1984. Spent mushroom compost as a soil amendment for vegetables. J. Amer. Soc. Hort. Sci. 109:698-702. Wei, H., M. P. Tucker, J. O. Baker, M. Harris, Y. Luo, Q. Xu, M. E. Himmel, and S. Y. Ding. 2012. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity. Biotechnol. Biofuels. 5:20. Wilson, G. C. S. 1983. The physico-chemical and physical properties of horticultural substrates. Acta Hort. 150:19-32. Yu H., G. Zeng, H. Huang, X. Xi, R. Wang, D. Huang, G. Huang and J. Li. 2007. Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18:793-802.
摘要: Peat is a common growth medium used for vegetable plug seedlings. In view of the decreasing output, using composted agricultural waste to replace part of the peat is one of the possible ways of providing an alternative medium. In this research, we screened a CY1 isolate with a strong cellulose decomposing ability, which was identified as Lichtheimia ramosa, a common microbial in the brewing industry obtained from several substrates. CY1 had optimal growth at pH 5-7, and both growth and cellulase activity were apparent at 40℃. In the experiment, CY1 was incubated in media in which different carbon and nitrogen sources and crop residues extract were added, and the growth of CY1 was inhibited significantly by urea and tomato plant residues extract. Spent mushroom substrates (SMS), bagasse and tomato plant residues (T) are common agricultural wastes in Taiwan. CY1 was added to these three kinds of material for composting. The center temperature of the SMS and bagasse composts were in general higher than the temprature of the control during the process, which showed that the microorganisms were more active. Due to the unsuitable pH and inhibitory action, there was no significant effect of T compost on CY1. After 12 weeks, the pHs of SMS and bagasse composts were approximately 6, while that of the T compost was over 8, and the electrical conductivity values of the three kinds of compost were lower than 500 μs/cm. Available Ca, K and Mg in the three composts increased with composting duration; however, the levels of micronutrients decreased in the T compost due to its high pH. Bagasse had the highest carbon-to-nitrogen ratio (203.24) of the three materials, followed by SMS and T (27.78 and 18.59, respectively), whereas all treatments led to a ratio of below 20 after composting. The water-holding capacities of SMS and T composts were lower than that of peat, while the physical properties of milled bagasse compost were similar to those of peat. Seedlings of cabbage 'peak' were grown in plugs with different media composed of the three composts mixed in different proportions with peat, and the greatest growth vigor was observed in media with a 100% proportion of the three kinds of compost. Seedlings exhibited a higher stem length, greater leaf area and greater shoot fresh weight when grown in T medium as compared with peat, but when grown in SMS and bagasse, the plants were smaller due to the lower nutrient content. If the irrigation and fertilization management strategies can be adequately adjusted, all three composts could be substituted for peat as a plug seedling medium.
泥炭為蔬菜穴盤育苗上常用之介質,鑑於其日益稀少的產量,有必要尋找替代介質,將農業廢棄物經堆肥化處理製成可利用之介質為一可行方法。本研究自不同基質中篩選出具良好纖維分解能力之菌株CY1,經鑑定為傘枝黎頭霉(Lichtheimia ramosa),為釀造工業中常見之菌種,適合生長於pH 5-7之弱酸性環境,在40℃時生長及纖維素酶活性最佳。於培養基添加不同碳氮源之測試中可得知尿素顯著抑制CY1生長,培養基添加不同植株殘體萃取液時觀察到番茄殘株會抑制其生長。 廢棄太空包之木屑、榨糖後之蔗渣與番茄栽培期間修剪之殘株為台灣常見農業廢棄物,將三種資材分別添加CY1菌液進行堆肥化作用,木屑與蔗渣堆肥堆積期間之中心溫度大多高於對照組,顯示其中微生物較活躍,而番茄殘株堆肥由於抑制菌株生長與不適當之pH,未有明顯效果。堆積12週後木屑與蔗渣堆肥之pH約為6,番茄殘株堆肥高達8以上,而EC值三種堆肥皆降至500 µs/cm以下。有效性鈣、鉀、鎂在三種堆肥中的含量大致隨堆積時間而增加,番茄殘株堆肥中之微量元素有效性因高pH而下降。原料之碳氮比以蔗渣的203.24為最高,其次為木屑27.78及番茄殘株18.59,經堆積後三種堆肥最終碳氮比皆低於20。堆肥成品之物理性質與慣用泥炭配方相較,木屑與番茄殘株堆肥保水力不佳,磨碎之蔗渣堆肥各性質與泥炭相近。將三種堆肥分別以不同比例與泥炭混合進行甘藍'高峰'之穴盤育苗,苗株於三種介質之生長狀況皆以100%堆肥的比例為最佳。與泥炭土栽培相較,番茄殘株堆肥之莖長、葉面積、地上部鮮重則較泥炭高,木屑與蔗渣堆肥則因肥份較少造成植株較小。如配合不同介質特性予以適當之灌溉管理與施肥調整,則此三種堆肥應可取代泥炭作為穴盤育苗之介質。
URI: http://hdl.handle.net/11455/89208
其他識別: U0005-2807201513361000
文章公開時間: 2018-07-30
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.