Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89212
標題: 胡瓜'夏笛'有機養液栽培之研究
Studies on The Organic Hydroponic of Cucumber 'Sia Di'(Cucumis sativus L.)
作者: Yen-Cheng Lu
呂彥誠
關鍵字: 胡瓜
有機
養液栽培
cucumber
organic
hydroponic
引用: 王銀波。1988。養液栽培之肥料與管理。沈再發、許淼淼主編。養液栽培技術講習會專刊第一輯。行政院農業委員會。pp.59-69。 王銀波、吳正宗。1990。培養液之理論與實際。沈再發、許淼淼主編。養液栽培技術講習會專刊第三輯。行政院農業委員會。pp.14-26。 王銀波、吳正宗。1992。水耕養液中的氮素問題。養液栽培技術講習會專刊第四輯。行政院農業委員會。pp.15-27。 吳正宗。2001。。主要肥料簡介。王銀波主編。肥料要覽。行政院農業委員會。台灣。pp.48-68。 李文汕。1999。蔬菜無土介質容器栽培。蔬菜容器栽培技術研討會專集。pp.1-17。 李金龍、候鳳舞。1989。養液栽培之發展方向與展望。沈再發,許淼淼及徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。pp.1-3 李哖。1989。。固體介質之養液栽培。沈再發,許淼淼及徐森彥主編。 養液栽培技術講習會專刊第二輯。行政院農業委員會。pp.78-87 李金龍、傅季郁。1988。本省養液栽培之發展方向與重點。養液栽培技術講習會專刊第一輯。行政院農業委員會。pp.1-7。 李國權、林慧玲。1989。水耕蔬菜營養失調常見之症狀與診斷方法。養液栽培技講習會專刊第二輯。行政院農業委員會。pp.67-77。 李佛琳、彭桂芬、蕭鳳回。1999。我國煙草鉀素研究的現狀與展望。中國煙草科學。1:22-25 林景和。2001。腐植酸對土壤、磷礦石及鳥糞石養分有效性和作物養分吸收與錳毒害緩解之影響。國立台灣大學農業化學研究所。144p。 孫騫、楊軍、張紹陽、張鳳琪、丁士林。2006。。鉀營養與果樹光合生理及果實品質關係研究進展。廣東農業科學。12:126-129。 張育菁。2004。鈣對小胡瓜及絲瓜葉片和果實礦物元素濃度之影響。國立中興大學園藝學系碩士論文。137p。 倪吾鐘、何愈祖、林榮新。1997。鉀對大白菜的營養作用及其生理機制研究。植物營養與肥料學報。3(2):117-121。 莊作權、譚鎮中譯。1983。自然界中元素的生物地質化學循環。植物 營養學。國立編譯館。pp.16-18。 郭魁士。1990。。土壤學。中國書局。台北。pp.210-453。 孟煥文、程智慧、程小金、張忠新、楊玉梅、劉濤。2004。授粉對黃 瓜果實發育和品質的影響。西北植物學報。12:2307-2311。 高德錚。1989。國內外各種養液栽培法特性之比較。沈再發,許淼淼及徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。pp.17-43。 陳仁炫。1991。土壤管理手冊。國立中興大學土壤調查試驗中心。pp.199-251。 陳仁炫。1993。強酸性土壤的問題及改良對策。農藥世界。114(2):13-17。 游雯蓉。2003。瓜類植株鈣之吸收與運移。國立中興大學園藝學系碩士論文。98p。 黃敏奇。2004。小白菜'三鳳'無土薄層介質栽培技術之開發研究。國立中興大學園藝學系碩士論文。124p。 賴文龍、蔡宜峰。2006。施用溶磷菌與根瘤菌複合菌、氮肥及磷肥 對落花生生長效應之研究。臺中區農業改良場研究彙報。93:71-79。 葉士財。1998。五種有機介質於盆栽使用中之理化性變化。國立中興大學園藝學系碩士論文。104p。 蔡金川、李孟穎、蕭吉雄譯。1997。生理障害。胡瓜栽培與營養、生理障害。財團法人農友社會福利基金會。pp.24-37。 蔡金川、李孟穎、蕭吉雄譯。1997。要素缺乏。胡瓜栽培與營養、生理障害。財團法人農友社會福利基金會。pp.38-59。 薛佑光。2000。介質理化特性及其對甘藍與番茄穴盤苗之影響。國立中興大學園藝學系碩士論文。92p。 廖玉琬、徐善德譯。1999。植物生理學。啟英文化出版社。pp.581。 劉詠梅、王鵬、談鋒、李坤培。2000。鉀營養對番紅花水分關係的影響。西南農業大學學報。22(4):356-364。 Alagawasi, A. R. and A. C. Gaur. 1988. Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil. 105:241-246. Albert U. Imbufe, Antonio F. Patti, David Burrow, Aravind Surapaneni, William Roy Jackson and Alvin D. Milner. 2005. Effects of potassium humate on aggregate stability of two soils from Victoria, Australia. Geoderma 125:321–330. Allison, F. E. 1973. Soil organic matter and its role in crop production. Elsevier Scientific Publishing Company, London. Altunlu, H., A. Gul and A. Tunc. 1999. Effect of nitrogen and potassium nutrition on plant growth, yield and fruit quality of cucumbers grown in perlite. Acta Hort. 486:377-381. Atkin, K and M. A. Nichols. 2004. Organic Hydroponics. Acta Hort 648:121-127. Argo, W. R. and J. A. Biernbaum. 1996. The effect of lime, irrigation-water source, and water-soluble fertilizer on root-zone pH, electrical conductivity, and macronutrient management of container root media with impatiens. J. Amer. Soc. Hort. Sci. 121:442-452. Bacci, L., M.C. Picanco, A.H.R. Gonring, R.N.C. Guedes and A.L.B. Crespo. 2006. Critical yield components and key loss factors of tropical cucumber crops. Crop Protection 25:1117-1125. Boonkorkaew, P., S. Hikosaka and N. Sugiyama. 2007. Effect of pollination on cell division, cell enlargement, and endogenous hormones in fruit development in a gynoecious cucumber. Scientia. Horticulture 116:1-7. Cakmak, I. 2005. The role of potassium in alleviating detrimental effects of abiotic stressesin plant. J. Plant Nutr. Soil Sci. 168:521-530. Catterall, W. A. 1995. Structure and function of voltage-gated ion channels. Annu. Rev. Biochem. 64:493-531. Demiral, M. A. and A. T. Koseoglu. 2005. Effect of potassium on yield, fruit quality, and chemical composition of greenhouse-grown Galia melon. J. plant nutr. 28:93-100. Frossard, E., L. M. Condron, A. Oberson, S. Sinaj, and J. C. Fardeau. 2000. Processes governing phosphorus availability in temperate soils. J. Environ. Qual. 29: 12-53. Gahoonia, T. S., N. Claassen, and A. Jungk. 1992. Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant Soil. 140:241-248. Fox, T. C. and Guerinot, M. L. 1998. Molecular biology of cation transport in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:669-696. G.L. Fuller. and A.C. Leopold. 1975. Pollination and timeing of fruit-set in cucumbers. Hortscience 10:617-618. Handreck, K. A. 1983. Particle size and physical properties of growing media for containers. Common. In Soil Sci. Plant Anal. 14:209-222 Hikosaka, S., Sugiyama, N., 2004. Characteristics of flower and fruit developmentOf multi-pistillate type cucumbers. J. Hort. Sci. Biotechnol.79:219–222. Hinsinger, P. and R. J. Gilkes. 1996. Mobilization of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur. J. Soil Sci. 47:533-544. Ingestad, T. 1973. Mineral nutrient requirements of cucumber seedlings. Plant Physiol. 52:332-338. Jones, David L., John R.Healey, Victoria B. Willett, John F.Farrar, and Angela Hodge, 2005. Dissolved organic nitrogen uptake by plants – an important N uptake pathway? Soil bio.biochem.37:413-423. Jones, D.L. and A. Hodge, 1999. Biodegrad kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil bio. biochem. 31:1331-1342. Jones, D.L., 1998. Amino acid biodegradation and its potential effects on organic nitrogen capture by plants. Soil bio. biochem. 31:613-622 Kazda, M. and P. Weilgony. 1988. Seasonal dynamics of major cations in xylem sap and needles of Norway spruce (Picea abies L. Karst.) in stands with different soil solution chemistry. Plant Soil. 110(11):91-100. Kaiser, W. M. 1982. Correlation between changes in photosynthetic activity and changes in total protop last volume in leaf tissuefrom hygro2, meso2, and xeyophytes under osmotic stress. Planta. 154:538-545. Kang, J. Y., H. H. Lee and K. H. Kim. 2004. Physical and chemical properties of organic horticultural substrates used in Korea. Acta Hort 644:231-235. Kazda, M. and P. Weilgony. 1988. Seasonal dynamics of major cations in xylem sap and needles of Norway spruce (Picea abies L. Karst.) in stands with different soil solution chemistry. Plant Soil. 110(11):91-100. Keltjens, W. G. and J. H. Nijenstein. 1987. Diurnal variations in uptake, transport and assimilation of NO3- and efflux of OH- in maize plants. J. Plant Nutr. 10:887-900. Latin, R. X. 1996. Noninfectious Disorders Nutritional Disorder. Compendium of Cucubit Diseases. T. A., Zitter, D. L., Hopkins, and C. E., Thomas, eds. APS Press, Minnesota, U.S.A. pp.87 Maathuis, F. J. M. and Sanders, D. 1997. Mechanism of potassium absorption by higher plants. Physiol. Plant:96 158-168. Mackowiak, C. L., R. M. Wheeler, G.. W. Stutte, N. C. Yorio and J. C. Sager. 1997. Use of biologically reclaimed minerals for continuous hydroponic potato production in a celss. Adv. Space Res. 20:1815-1820. Mackowiak, C. L., G. W. Stutte, J. L. Garland, B. W. Finger, and L. M. Ruffe. 1997. Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues. Adv. Space Res. 20:2017-2022. Mackowiak, C. L., J. L. Garland, and J. C. Sager. 1996. Recycling crop residues for use in recirculating hydroponic crop production. Acta Hort 440:19-24. Mackowiak, C. L., J. L. Garland, R. F. Strayer, B. W. Finger and R. M. Wheeler. 1996. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system. Adv. Space Res. 18:(1/2)281-(1/2)287 Marti, H. R.,and H. A. Mills. 2002. Nitrogen and potassium nutrition affect yield, dry weight partitioning, and nutrient-use efficiency of sweet potato. Commun. Soil Sci. Plant Anal.33(1&2):287-301. Mengel, K. and E.A. Kirkby. 1987. Principles of plant nutrition. 4th edn. International Potash Institute, Bern, Switzerland. :687. Mills, H. A. and J. B. Jones. 1996. Plant analysis handbook II :a practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Inc. Georgia. pp.181. Moinuddin, K. Singh, S. K. Bansal, and N. S. Pasricha. 2004. Influence of graded levels of potassium fertilizer on growth, yield, and economic parameters of potato. J. plant nutr. 27:239-259. Molitor, H. D. 1990. The European perspective with emphasis on subirrigation and recirculation of water and nutrients. Acta Hort. 272:165-173. Morvant, J. K., J. M. Dole, and E. Allen. 1997. Irrigation systems alter distribution of roots, soluble salts, nitrogen, and pH in the root medium. HortTechnology. 7(2): 56-160. Nielsen, K. L and K. Thorup-Kristensen. 2004 Growing media for organic tomato plantet production. Acta Hort 644:183-187. Nasholm,Torgny, Kerstln Huss-Danell, and Peter Hogberg, 2000. Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology. 81:1155-1161 Norrie, J., M. E. D. Graham, J. Charbonneau, and A. Gosselin. 1994. Impact of irrigation management of greenhouse tomato: yield, nutrition, and salinity of peat substrate. Can. J. Plant Sci. 74:497-503. Owen, A.G.,and D.L. Jones., 2003. Competition for amino acid between wheat root and rhizosphere microorganisms and the role of amino acid in plant N acquisition. Soil bio. biochem. 33:651-657. Ozanne, P.G. 1980. Phosphate nutrition of plants-general treatise. The role of phosphorus in agriculture. Eds. F. E. Khasawneh, E. C. Sample, and E. J. Kamprath. American Socity of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, USA. pp.559-589. Papadopoulos, A. P., and S. Khosla. 1993. Limitations of the K:N ration in the nutrient feed of drip-irrigated greenhouse tomatoes as a crop-management tool. Can. J. Plant Sci. 73:289-296. Pascale, S. D., Maggio, A., Fogliano, V., Ambrosino, P. and Ritieni, A., 2001. Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J. Hortic. Sci. Biotechnol. 7:447-453 Prasad, M. and M. J. Maher. 1993. Physical and chemical properties of fractionated peat. Acta Hort. 342:257-264. Raghothama, K. G. 1999. Phosphate acquisition. Ann. Rev. Plant Physiol. Mol. Biol. 50:665-693. Ralston, D. B. and R. P. McBride. 1976. Interaction of mineral phosphate-dissolving microbes with red pine seedlings. Plant Soil 45:493-507. Riley, D. and S. A. Barber. 1971. Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci. Soc. Am. Proc. 35:301-306. Roth, C. H. and M. A. Pavan. 1991. Effects of lime and gypsum on clay dispersion and infiltration in samples of a Brazilian Oxisol. Geoderma. 48:351-361. Rubio, F., Gassmann, W. and Schroeder, J. I. 1995. Sodium-driven potassium uptake by the plant potassium transporter HKTI and mutations conferring salt tolerance. Science. 270:1660-1663. Schachtman, D. P. and Schroeder, I. J. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature. 370:655-658. Schachtman, D. P., Tyerman, S. T. and Terry, B. R. 1991. The K+/Na+ selectivity of a cation channel in the plasma membrane of root cells does not differ in salt tolerant and salt sensitive wheat species. Plant Physiol. 97:598-605. Shannon, David, David.Jones, Thippaya Junvee-Fortune, and John F.Farrar, 2005. Plant capture of free amino acids is maximized under high soil amino Acid concentrations. Soil bio. biochem. 37:179-181. Spiers, J. M. 1993. Nitrogen, calcium, and magnesium fertilization affects growth and leaf elemental content of dormanred raspberry. J. Plant Nutr. 16(12):2333-2339. Subedi, P.P. and M.D. Sharma. 2005. Single stem cultivation and performance of cucumber cultivars during winter-spring seasons. J. Inst. Agric. Anim. Sci. 26:149-151. Taiz L. and E. Zeiger. 2002. Plant Physiology. The Benjamin/Cummings Publishing Company, Inc. pp.302-307 Tisdale, S. L., W. L. Nelson and J. D. Beaton. 1985. Soil fertility and fertilizer, 4th ed. Macmillan Publishing Company. New York. pp.210-211. William, B. J., J. C. Peterson, and J. D. Utzinger. 1988. Liming Reactions in sphagnum peat-based growing media. J. Amer. Soc. Hort. Sci. 113(2):210-214. Yu Quan Jing, Ying Li, Ya Rong Qian and Zhu Jun Zhu. 2001. Cell division and cell enlargement in fruit of Lagenaria leucantha asinfluenced by pollination and plant growth substances. Plant Growth Regulation 33:117-122.
摘要: This research studied the feasibility of cultivating cucumbers in soilless medium with liquid organic nutrition. To analyze available calcium and magnesium contain, four sets of organic medium (composed of peat moss: rice hull: coconut fiber: wood= 35: 15: 15: 35) were added 0.5, 1.0, 2.0, and 4.0 g/L of dolomite accordingly. The result showed that within 14 to 21 days, the pH of the medium was steady and balanced. In addition, within the sixty-day cultivation period, the pH of the medium containing 2 g/L dolomite maintained between 5.8 and 6.0, and the EC did not exceed 4 ms/cm, which is considered an appropriate environment for cucumbers to grow. As a result, the medium with additional 2 g/L of 1.4-mm dolomite could provide cucumbers the proper pH and stable sources of calcium and magnesium for development. Based on Experiment One's organic medium, which contained additional dolomite, Experiment Two added bone meal 0.5 g/L and phosphate 0.5 g/L as the sources of phosphate and compared the cucumber development of simplified chemical nutrition (with 200 ppm of nitrogen and 225 of ppm potassium) to that of organic substance consisted with amino acid and potassium humic acid with the same concentrations of nitrogen and potassium. After 60 days, the observation showed that the leaf number per plant was between 23.4 and 28.1 leaves in both sets with the leaf areas between 8615 and 9631 cm2. Moreover, the dry weight of each plant ranged from 51.4 to 57.7 grams per plant. Cucumber developments were both normal with no significant difference. Furthermore, leaf analysis showed that the amounts of nitrogen, phosphorus, and calcium were all within Harry's suggested range. Although the magnesium content in leaves of plants cultivated with the organic liquid was between 1.26 and 1.47%, much lower than that of the chemical nutrition (1.73%), the condition was still suitable for cultivating cucumbers. However, in the organic mixture, potassium concentration gradually decreased, and by the forty-fifth day, there was only 1.42 to 2.33% left, which was not only less than that of the cucumbers in chemical nutrition but also lower than the suggested level at 3.50 to 5.50%. As to the quality and the yield of fruit production, there were no distinctive differences between the fruit weights, fruit lengths, and fruit diameters of the treatments, but the plants in organic nutrition had higher fruiting number and so as to had higher yields per plant. Experiment Three reused the medium of Experiment Two, and after 60 days, the pH decreased to between 5.01 and 5.21; although the medium turned slightly acidic, it had no harmful effects on cucumber growth. The leaf number per plant was between 22.6 and 28.8, the leaf area was between 8929 and 11703 cm2, and the dry weight per plant was between 48.7 and 66.4 grams. The plants normally grew, and the results showed no evident variation. As to the element contents, until the forty-fifth day, the plants cultivated with the liquid organic nutrition contained 0.40% of phosphorus, which was higher than the recommended lower limit of 0.25%. However, after sixty days, the content decreased to 0.21%, indicating the lack of phosphorus during the later growth period. In addition, after 45 days, the phosphorus and potassium contents in the media dropped significantly. The result showed that the reused medium could only provide enough calcium and magnesium for cucumbers growth but could not supply them sufficient phosphorus; therefore, slow-released fertilizer could improve the situation. Since a great number of fruits develop at the same time, they competed for photosynthate. As a result, although the averaged flowering number of each plant was between 41.2 and 42.2, the fruit set percentage per plant was only between 15.8 to 23.1%, which was relatively low. Nevertheless, the plants irrigated with organic fertilizer evidently had the higher fruit set percentage per plant than the plants irrigated with chemical nutrition. In conclusion, the organic medium with additional 2g/L dolomite could provide enough calcium and magnesium for two crops of cucumbers growth while maintaining the suitable pH range of the medium. It is postulated that the organic medium mixed with slow-released fertilizers (containing calcium, magnesium, and phosphorus) with organic liquid nutrition providing nitrogen and potassium sources was most feasible in organic hydroponic production of cucumbers.
本研究為探討以有機液體養液栽培胡瓜之可行性,乃以泥炭土:稻殼:椰土:木屑=35:15:15:35之有機材料為介質,分別添加僅添加以1.4 mm過篩之0.5、1、2與4 g/L苦土石灰含量分析介質中其有效性鈣及鎂之元素含量。介質培育試驗結果顯示,所有處理之介質ph值在14至21天間可達到穩定平衡的狀態,其中添加苦土石灰2 g/L之處理,其pH值在60天之培育期間內可維持在5.8至6.0之間,且EC值並無超過4 ms/cm,介質適合胡瓜生長範圍。因此介質中添加以1.4 mm過篩之苦土石灰2 g/L作為鈣、鎂源及維持介質pH值之穩定具可行性。 試驗二以試驗一經添加苦土石灰調整之有機介質,同時添加肉骨粉 0.5 g/L及磷礦砂 0.5 g/L作為磷肥來源,再以僅含有氮濃度為200 ppm及鉀濃度為225 ppm之化學簡化養液及以胺基酸及腐植酸配成相同氮鉀濃度之養液分別進行胡瓜夏笛之栽培比較試驗。經栽培60天後調查結果顯示,在營養生長方面,各處理之單株葉片數在23.4至28.1片之間;葉面積為8615至9631 cm2之間;乾物重為51.4至57.7 g/株之間,處理間皆無顯著差異且植株生育正常。進一步分析葉片元素含量顯示,不論化學養液或有機養液處理之植株其氮、磷、鈣元素之含量均在Mills和Jones(1996)建議合理含量範圍內,有機養液處理植株之鎂含量在1.26至1.47%之間,雖然顯著低於化學完全養液之1.73%,但仍屬於胡瓜正常生長之適當含量範圍。不過有機養液處理之植株的鉀含量隨著栽培時間之延長逐漸下降,至第45天以後,分別只有1.42至2.33%之間,不但明顯低於化學養液栽培之含量,同時也遠低於前人建議之適當含量範圍為3.50至5.50%之間。至於果實品質與產量方面,有機養液栽培之單果重、果長與周徑等品質性狀與化學完全養液及簡化養液處理間並無顯著差異,但單株結果數及產量皆顯著高於以化學完全養液栽培之植株。 試驗三將試驗二之有機介質進行重複栽培使用,經種植60天後調查結果顯示,pH值維持在5.01至5.21之間,介質雖略有酸化但對生長勢並無不利影響。各處理之單株葉片數在22.6至28.8片之間;葉面積為8929至11703 cm2之間;乾物重為48.7至66.4 g/株之間,處理間均無顯著差異,且植株生育正常。在元素分析方面,栽培至45天,以有機養液處理之植體磷含量皆在0.40%以上,均高於建議合理範圍之下限值0.25%。但至第60天,則下降至只有0.21%顯示後期生育出現磷元素含量不足之現象。栽培45天以後,介質中鉀及磷元素含量明顯偏低,顯示重複使用介質種植胡瓜雖仍可提供足夠之鈣及鎂元素,但磷之供應已經明顯不足,須重新補充緩效性磷肥。至於植株開花與著果方面,可能由於大量果實在同時期發育,同化產物競爭激烈,全部處理植株之平均開花數分別為41.2至42.2,但著果率僅有15.8%至23.1%之間。不過有機養液栽培之單株結果數及產量仍顯著高於以化學完全養液栽培之植株。 綜合以上試驗結果證明,有機介質添加2 g/L苦土石灰可充份提供兩作胡瓜生長發育所需之鈣與鎂元素,且可維持介質pH之穩定。因此在現有之有機介質中預混鈣、鎂及磷等緩效性有機資材提供相關元素,另以有機養液提供氮、鉀源以進行有機養液栽培之模式具有相當大之可行性,值得進一步開發研究。
URI: http://hdl.handle.net/11455/89212
其他識別: U0005-0907201511434600
文章公開時間: 2015-07-16
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.