Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89214
標題: 葉綠素螢光作為評估山葵高溫逆境之指標
Chlorophyll Fluorescence as an Indicator to Evaluate High Temperature Stress of Wasabi【Wasabia japonica (Mique) Matsumura】
作者: Hsuan-En Hung
洪萱恩
關鍵字: 葉綠素螢光
山葵
高溫逆境
Chlorophyll Fluorescence
Wasabi
High Temperature Stress
引用: 1. 王昭月、曾夢蛟。2010。利用葉綠素螢光與有效授粉估測甜椒之耐熱性。台灣農業研究。59:237-248 2. 王玲平、周生茂、戴丹麗、曹家樹。2010。植物酚類物質研究進展。浙江農業學報。22:696-701 3. 何美慶。2014。葉綠素螢光作為評估番石榴溫度逆境之指標。國立中興大學園藝學系碩士論文。臺灣臺中。pp.6-10 4. 李芸嫣。2012。葉綠素螢光作為評估番木瓜溫度逆境之指標。國立中興大學園藝學系碩士論文。臺灣臺中。pp.10 5. 林安秋。1996。作物之光合作用。臺灣商務印書館股份有限公司。臺灣臺北。pp. 21 6. 林麗欽。2004。山葵的風味物質及其殺菌作用。中國調味品。1:12-15 7. 柯勇。2002。 植物生理學。 藝軒圖書出版社。臺灣臺北。pp.209-309 8. 柯侑婷。2007。十字花科蔬菜中硫醣苷含量與芥子酶特性之研究。國立台灣大學原藝系碩士論文。台灣台北。 9. 胡敏夫、邱善美、劉新裕。1986。不同環境對山葵生長與產量之影響。中華農業研究 35(3):292-299。 10. 胡敏夫。1990。日本栽培山葵現狀。豐年社。40(4):45-47 11. 胡敏夫。1991。山葵栽培。台灣省農業試驗所技術服務6:21-26。 12. 胡敏夫、邱善美、羅朝村、劉新裕、杜金池。1991。山葵台農1號之育成。中華農業研究。40(1):13-27 13. 胡敏夫、王昭月、劉慧瑛。1992。台灣山葵主要栽培品種(系)間品質之評價。中華農業研究。41(1):34-42。 14. 胡敏夫、賴永昌、劉新裕。1994。山葵種原鑑定與農藝特性觀察。中華農業研究。43(3):302-307 15. 胡敏夫。2005。山葵。台灣農家要覽農作篇(二) 增修訂三版。農委會。pp.287-294 16. 姚銘輝、盧虎生、朱鈞。2002。葉綠素螢光與作物生理反應。科學農業。50:31-41 17. 姚銘輝、陳守泓、漆匡時. 2007. 利用葉綠素螢光估算作物葉片之光合作用. 台灣農業研究56:224-236. 18. 張守仁。1999。葉綠素螢光動力學參數的意義及討論。植物學通報。16(4):1-7 19. 陳思如。2007。非洲菊耐熱指標與切花生理。國立台灣大學原藝系碩士論文。臺灣臺北。 20. 劉玲玲、李軍、李長輝、夏平。2004。馬鈴薯可溶性蛋白、葉綠素及 ATP含量變化與品種抗旱性關係的研究。中國馬鈴薯。18(4):201-204 21. 劉敏莉。2012。 葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報 21(1):1-15. 22. 羅朝村、王貴美。2000。台灣山葵地上部之真菌病害種類與發生調查。植物病理學會刊。9:17-22 23. 大鶴勝、花山和美。1982。生育期間中辛味生成因子変動。日本農芸化学。会誌。56:935-937 24. 築地録太郎、 鈴木正。1956。栽培基礎調査 (1)温度調査。日本林学会誌。38:415-418 25. Allakhverdiev, S. I., V. D. Kreslavski, V. V. Klimov, D. A. Los, R. Carpentier, and P. Mohanty. 2008. Heat stress: an overview of molecular responses in photosynthesis. Photosyn. Res. 98:541-550. 26. Allen, J.F. 2003. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci. 8:15-19. 27. Allen, D.J., and D.R. Ort. 2001. Impacts of chilling temperature on photosynthesis in warm climate plants. Trends Plant Sci. 6:36-42. 28. Allakhverdiev, S. I., V. D. Kreslavski, V. V. Klimov, D. A. Los, R. Carpentier, and P. Mohanty. 2008. Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res. 98:541–550. 29. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:601-639. 30. Baker, N.R. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:89-113. 31. Baker, N. R., and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55:1607-1621. 32. Brown, B. D., R. C. Gibson, B. Geary, and Matthew J. Morra. 2008. Biofumigant biomass, nutrient content and glucosinolate response to phosphorus. J. Plant Nutr. 31: 743–757. 33. Bukhov, N. G., and Prasanna Mohanty.1999. Elevated temperature stress effects on photosystems: characterization and evaluation of the nature of heat induced impairments. Concepts in photobiology: photosynthesis and photomorphogenesis. 617-648 34. Bukhov, N. G. and R. Carpentier. 2000. Heterogeneity of photosystem II reaction center as influenced by heat treatment of barely leaves. Physiol. Plant. 110:279-285. 35. Camejo, D., P. Rodrı´guez, M. A. Morales, J. M. D. Amico, A. Torrecillas and J. J. Alarco´n. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162: 281-289. 36. Chen, W. R., J. S. Zheng, Y. Q. Li, and W. D. Guo. 2012. Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron. Russ. J. Plant Physiol. 59(6):732–740. 37. Crafts-Brandner, S. J. and M. E. Salvucci. 2004. Analyzing the impact of high temperature and CO2 on net photosynthesis: biochemical mechanisms, models and genomics. Field Crop. Res. 90:75-85. 38. Crafts-Brandner, S. J. and R. D. Law. 2000. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase / oxygenase activation state. Planta 212:67-74. 39. Cosgrove, J. and M. A. Borowitzka. 2011. Chlorophyll Fluorescence Terminology: An Introduction. Chlorophyll a fluorescence in aquatic sciences: methods and applications. pp.1-18 40. Demirevska-kepova, K., R. Holzer, L. Simova-Stoilova and U.Feller. 2005. Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco activase in wheat leaves. Biol. Plantarum. 49:521-525. 41. Depree, J. A., T. M. Howard and G. P. Savage. 1999. Flavour and pharmaceutical properties of the volatile sulphur compounds of wasabi (Wasabia japonica). Food Res. Int.. 31:329-337. 42. Elsheery N.I., K.F. Cao. 2008. Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Plant. 30:769–777 43. Fahey, J. F., A. T. Zalcmann and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochem. 56:5-51. 44. Gerendas, J., S. Breuning, T. Stahl, V. Mersch-Sundrmann, and K. H. Muhling. 2008. Isothiocyanate concentration in kohlrabi (Brassica oleracea L. Var. gongylodes) plants as influenced by sulfur and nitrogen supply. J. Agric. Food Chem. 56:8334-8342. 45. Gerendas, J., J. Podestat, T. Stahl, K. Kubler, H. Bruckner, V. Mersch-Sundrmann, and K. H. Muhling. 2009. Interactive effects of sulfur and nitrogen supply on the concentration of sinigrin and allyl isothiocyanate in indian mustard (Brassica juncea L.). J. Agric. Food Chem. 57:3837–3844. 46. Gorbe, E., and A. Calatayud. 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Hort. 138:24-35. 47. Graser, G., B. Schneider, N. J. Oldham, and J. Gershenzon. 2000. The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa(Brassicaceae). Arch. Biochem. Biophys.. 378: pp. 411–419. 48. Havaux, M. 1995. Temperature sensitivity of the photochemical function of photosynthesis in potato (Solanum tuberosum) and a cultivated andean hybrid (Solanum x juzepczukii). J. Plant Physiol. 146: 47-53. 49. Hayashi, H., A. I. L. Mustardy, P. Deshnium, M. Ida and N. Murata. 1997. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. The Plant Journal. 12: 133-142. 50. He, B.. 2006. Myrosinase in leafy brassica. Department of biological sciences, national university of Singapore. 51. Howarth, C.J., 2005. Genetic improvements of tolerance to high temperature. in:Ashraf, M., Harris, P.J.C. (Eds.), abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press Inc., New York 52. Hakam, N., S. Khanizadeh, J.R. DeEll, and C. Richer. 2000. Assessing chilling tolerance in roses using chlorophyll fluorescence. HortScience 35(2):184–186. 53. Heldt, H.W. and F. Heldt. 2011. Photosynthesis is an electron transport process. Plant Biochem. 43-64,67-114. 54. Il, S. S., M. Hideki, and N. Kinae. 2004. Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori. Int. J. Food Microbiol.. 94: 255-261. 55. Janka, E., O. Körner, E. Rosenqvist, and C. O. Ottosen. 2013. High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora). Plant Physiol. Biochem. 67:87-94 56. Jimenez, M. S., A.M. Gonzalez-Rodriguez, D. Morales, M.C. Cid, A.R. Socorro, and M. Caballero. 1997. Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses. Photosynthetica. 33:291-301. 57. Kalituho, L. N., N. L. Pshybytko, L. F. Kabashnikova, and P. Jahns. 2003. Photosynthetic apparatus and high temperature: role of light. Bulg J Plant Physiol. 32:281–289 58. Kim, S. J., T. Matsua, M. Watanabe, and Y. Watanabe. 2002. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.). Soil Sci. Plant Nutl.. 48 (1):43-49. 59. Klein, J.D. and S. Lurie. 1990. Prestorage heat treatment as a means of improving post-storage quality of apples. J. Amer. Soc. Hort. Sci. 115:256–259. 60. Krause, G. H., E. Weis.1991. Chlorophyll fluorescence and photosynthesis : the basics. Annu. rev. Plant Physiol. and Plant Mol. Biol.. 42: 313-349 61. Kotak, S., J. Larkindale, U. Lee, P. V. Koskull-Do ̈ring, E. Vierling, and K. D. Scharf. 2007. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol.. 10:310-316. 62. Los, D. A. and N. Murata. 2004. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta. 1666:142-157. 63. Lurie, S. and J.D. Klein. 1990. Heat treatment of apples: Differential effects on physiology and biochemistry. Physiol. Plant. 78:181–186. 64. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 345:659-668. 65. Mathur, S., A. Jajoo, P. Mehta, and S. Bharti. 2011. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol (Stuttg). 13(1):1-6. 66. Molina-Bravoa, R, C. Arellano , B. R. Sosinski and G. E. Fernandez. 2011. A protocol to assess heat tolerance in a segregating population of raspberry using chlorophyll fluorescence. Sci. Hortic.. 130: 524–530. 67. Moradi, F. and A. M. Ismail. 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Bot. 99: 1161–1173. 68. Musk, S.R.R., T.K. Smith and I.T. Johnson. 1995. On the cytotoxicity and genotoxicity of allyl and phenethyl isothiocyanates and their parent glucosinolates sinigrin and gluconasturtiin. Mutat. Res. 348:19-23 69. Murata, N. and M. Miyao. 1985. Extrinsic membrane proteins in the photosynthetic oxygen-evolving complex. Trends Biochem. Sci. 10(3): 122-124 70. Müh, F. and T. Renger. 2014. Structure-based calculation of pigment–protein and excitonic pigment–pigment coupling in photosynthetic light-harvesting complexes. The Biophysics of Photosynthesis. Pp.3-44. 71. Nagasawa, T. and S. Osamu. 1957. Chemical studies on wasabi (Eutrema Wasabi, Maxim.). http://www.lib.shimane-u.ac.jp/kiyo/b012/008/b006.pdf 72. Nishiyama, Y., S. I. Allakhverdiev and N. Murata. 2005. Inhibition of the repair of Photosystem II by oxidative stress in cyanobacteria. Photosynth. Res. 84:1-7. 73. Noriko, H., M. Yoshiko, H. Atsuko, and I. Keiko. 1999. Comparison of effects of Wasabia japonica and allyl isothiocyanate on the growth of four strains of Vibrio parahaemolyticus in lean and fatty tuna meat suspensions. Int. J. Food Microbiol. 49: 27–34. 74. Palmer, J..1990. Germination and growth of wasabi (Wasabia japonica (Miq.) Matsumara). N. Z. J. Crop Hortic. Sci. 18:161-164 75. Paltel, P. N. and A. E. Hall. 1990. Genotypic variation and classification of cowpeafor reproductive responses to high temperatures under long photoperiods. Crop Sci. 30: 614–621. 76. Petkova,V, I. D., Denev, and D., Cholakov. 2007. Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters. Sci. Hortic. 111: 101-106. 77. Quick, W. P. and H.E.Neuhaus. 1997. The regulation and control of photosynthetic carbon assimilation. A Molecular Approach to Primary Metabolism in Higher Plants. 41-62. 78. Rahmanaur, H., S. A. Malikb and M. Saleem. 2004. Heat tolerance of upland cotton during the fruiting stageevaluated using cellular membrane thermostability. Field Crop Res. 85:149-158. 79. Raines, C. A.2003. The Calvin cycle revisited. Photosynth. Res. 75: 1–10 80. Rosenzweing, C. A., X. B. Iglesias, P.R. Yang, E. Epstein, and E. Chivian. 2001. Climate change and extreme weather events; Implications for food production, plant diseases and pest. Global Change and Human Health. 2:90-104. 81. Roháček, K. and M. Barták. 1999. Technique of the Modulated Chlorophyll Fluorescence: Basic Concepts, Useful Parameters, and Some Applications. Photosynthe. 37(3):339-363. 82. Schoffl, F., R. Prandl, A. Reindl, 1999. Molecular responses to heat stress. In: Shinozaki, K. and Yamaguchi-Shinozaki, K. (Eds.), molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Co., Austin, Texas, pp. 81–98. 83. Schonhof, I., D. Blankenburg, S. Müller, and A. Krumbein. 2007. Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J. Plant Nutr. Soil Sci.. 170:1-8. 84. Schansker, G., S. Z. To´th, A. R. Holzwarth, and G. Garab. 2014. Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynth Res.. 120:43–58. 85. Seubma, P., P. Kasemsap, O.van Kooten and J. Harbinson. 2012. Effects of high temperature exposure on chlorophyll gluorescence of Phalaenopsis Leaves. CMU.J.Nat.Sci.Special Issue on Agri. Natur Res. 11 (1): 409-419. 86. Sinsawat, V., J. Leipner, P. Stamp, and Y. Fracheboud. 2004. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ. Exp. Bot.. 52:123-129 87. Smillie, R. M., and S. E. Hetherington. 1983. Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo. Plant Physiol.. 72: 1043-1050 88. Smethurst, C. F. and S. Shabala. 2003. Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 30:335-343. 89. Song, J., L. Fan, C. F. Forney, and M. A. Jordan. 2001. Using volatile emissions and chlorophyll fluorescence as indicators of heat injury in apples. J. Amer. Soc. Hort. Sci. 126:771-777. 90. Sultana, T., G. P. Savage, D. L. McNeil and N. G. Porter. 2003. The yield of isothiocyanates in wasabi rhizomes stored at different temperatures. Food Agri. Enviroment. 1:39-45. 91. Sultana, T., and G. P. Savage.2008. Wasabi - Japanese Horseradish. Bangladesh J. Sci. Ind. Res..43(4):433-448. 92. van Kooten, O. and J.H. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25(3):147-150. 93. Urban, L. and M. Jannoyer. 2004. Functioning and role of stomata in mango leaves. Acta Hort. 645:441-446 94. Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad. 2007. Heat tolerance in plants: An overview. Env. Exp. Bot. 61:199-223. 95. Wise, R.R., A. J. Olson, S. M. Schrader, T. D. Sharkey. 2004. Electron transportis the functional limitation of photosynthesis in field-grown Pima cottonplants at high temperature. Plant Cell Environ. 27: 717–72. 96. Willits, D. H. and M. M. Peet 2001. Measurement of chlorophyll fluorescence as a heat stress indicator in tomato: laboratory and greenhouse comparisons. J. Amer. Soc. Hort. Sci.126:188-194. 97. Yamada, M., T. Hidaka, and H. Fukamachi. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Hort. 67:39-48. 98. Yamane, Y., T. Shikanai, Y. Kashino, H. Koike, and K. Satoh. 1998. Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth. Res. 57: 51–59. 99. Yamane, Y., T. Shikanai, Y. Kashino, H. Koike, and K. Satoh. 2000. Reduction of QA in the dark: another cause of fluorescence Fo increases by high temperatures in higher plants. Photosynth. Res. 63:23-34. 100. Yasujiro, M., H. Kazuhiro, N. Yoko, F. Hiroyuki, H. Fumihiko, U. Koji, O. Toshihiko. 2000. Antiplatelet and anticancer isothiocyanates in Japanese domestic horseradish, Wasabi. Mechanisms of Ageing and Development. 116:125-134 101. Zribi, L., G. Fatma., R. Fatma., R. Salwa., N. Hassan., R. M. Néjib. 2009. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato Solanum lycopersicum (variety Rio Grande). Sci. Hortic. 120:367-372.
摘要: Wasabi is a perennial spice plant. Its optimum growth temperature is at 8-18℃, so that was planted in high mountain areas in Taiwan and in which is often an ecologically fragile place. Now, because of climate change and people's environmental awareness has raised, Screening heat tolerance genotypes are very important in the wasabi breeding process. As a result, there will have a more positive helpful to the future development of hillside soil and water conservation as well as wasabi industry. Chlorophyll fluorescence has been used generally for many years to monitor the photosynthetic performance of plants effectively, which is an economical, rapid and non-destructive method.   In this study, we used mature leaves and plants of 14 lines and one seedling of wasabi, which were screened with 50℃ as high temperature stress. Finally, we selected the heat-tolerant lines No. 23 by the chlorophyll fluorescence method. And content of nitrogen, phosphorus, total phenolic compounds, free amino acids and soluble protein contents, which related to wasabi's piquancy, were determined.   Chlorophyll fluorescence yield of normal wasabi is between 0.82-0.83. The results indicated that wasabi leaves in all lines and seedling, underwent high temperature stress, and chlorophyll fluorescence yield (Fv/Fm) decreased as the temperature and treating time. The lines No.23 can maintain a relatively high yield of chlorophyll fluorescence. Screening materials of mature leaves and plants under high temperature stress have got the same result in chlorophyll fluorescence yield. But there are almost no differences in heat-tolerant, nitrogen, phosphorus, total phenol compounds, free amino acids and soluble protein contents between the heat tolerant and heat sensitive lines and seedling.
山葵【Wasabia japonia(Mique)Matsumura】為多年生香辛料作物,生長適溫為8℃-18℃,臺灣多種於高山地區,如今環保意識抬頭,因此培育出耐熱性山葵非常重要,對山坡地的水土保持以及山葵產業未來發展會有更正面的助益。葉綠素螢光可以有效的偵測植物的光合性能,這是一種經濟、快速且非破壞篩選工具,近年來廣泛地被應用在記錄植物的生理逆境。本試驗選了14種山葵品系及實生植株做為試驗材料,以50℃做為高溫逆境的溫度,並以葉綠素螢光儀做為篩選工具,篩選出較耐熱的山葵品系No.23,並分析耐熱與實生不耐熱山葵葉片之間氮、磷、總酚類、游離胺基酸以及可溶性蛋白質的含量,這些植化素與山葵的辛味有關。   山葵的葉綠素螢光值介於0.82-0.84之間,在本試驗中,無論哪種品系或是實生植株之山葵,葉綠素螢光值(Fv/Fm)皆隨著高溫處理時間增加而下降,其中No.23可維持相對較高的葉綠素螢光值。以離體葉片或植株做逆境試驗,其葉綠素螢光值的表現一致,植株外觀受高溫影響大。以耐熱性做為區分條件,No.23與實生植株的氮、磷、總酚類、游離胺基酸以及可溶性蛋白的含量與不耐熱植株幾乎沒有差別。
URI: http://hdl.handle.net/11455/89214
其他識別: U0005-2408201514323900
文章公開時間: 2018-08-26
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.