Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89215
標題: 葉綠素螢光作為評估番石榴溫度逆境之指標
Chlorophyll Fluorescence as an Indicator to Evaluate Temperature Stress of Guava (Psidium guajava L.)
作者: Mei-Ching Ho
何美慶
關鍵字: 番石榴
溫度逆境
葉綠素螢光
guava
temperature stress
chlorophyll fluorescence
引用: 王亞勤. 2012. 套袋材質與網室栽培對'珍珠'番石榴果實品質及貯運能力之影響暨評估溫度逆境指標之研究. 國立中興大學園藝學系碩士論文. 臺灣臺中. 98pp. ?大林. 2003. 低溫脅迫下番石榴葉片生理生化變化的探討. 林業科學 39:38-41. 李?景、?永?、??花、汪?根、?忠富. 2005. 長豇豆品種耐低溫弱光性和葉綠素螢光參數等的關係. 浙江農業學報 17(6):359-362. 李芸嫣. 2012. 葉綠素螢光作為評估番木瓜溫度逆境之指標. 國立中興大學園藝學系碩士論文. 臺灣臺中. 69pp. 李金龍. 1987. 園藝作物花粉活力測定與儲藏之研究. 科學農業 35:347-356. 宋濟民、陳世雄、葉茂生、林瑞松、李文汕、倪正柱. 1998. 全球氣候變遷對全球與臺灣地區農業生產之影響及因應措施與策略. 刊於: 林俊義、楊純明編著. 氣候變遷對農作物生產之影響. pp. 34-58. 台灣省農業試驗所. 臺灣台中. 林正忠. 2005. 果實日燒症. 刊於:植物保護圖鑑系列 15-番石榴保護. p.124. 防檢局. 臺灣臺北. 林宛螢. 2009. 油菜植株於淹水逆境下生長及生理反應. 國立中興大學園藝學系碩士論文. 臺灣臺中. 73pp. 林傳琦、高景輝. 2000. 植物之過氧化性傷害與鹽分逆境. 科學農業 48:244-248. 林慧玲. 1998. 番石榴果實後熟生理之研究. 國立臺灣大學園藝學系博士論文. 臺灣臺北. 255pp. 邱麗慧、王玉麒、詹明才. 2000. 植物與溫度逆境的交感作用I、植物低溫逆境的傷害. 科學農業 48(9-10):254-258. ??松、余迪求. 2010. 植物有性生殖對溫度脅迫反應的研究進展. 雲南植物研究 32(6):508-518. 姚銘輝、陳守泓、漆匡時. 2007. 利用葉綠素螢光估算作物葉片之光合作用. 台灣農業研究56(3):224-236. 姚銘輝、盧虎生、朱鈞. 2002. 葉綠素螢光與作物生理反應. 科學農業50(1-2):31-41. 柯勇. 2002. 植物生理學. 藝軒圖書出版社. 臺灣臺北. 762pp. 埔心鄉公所資訊網. 2014. 埔心城誌產業文化. <http://www.puxin.gov.tw/story/index_04.php> 徐邦達. 2002. 葉綠素螢光和PAM螢光儀:原理及測量. 光合作用研討會. pp. 1-9. 高景輝. 2006. 植物賀爾蒙生理. 華香園出版社. 臺灣臺北. 556pp. 張致盛、王念慈. 2008. 全球暖化趨勢對臺灣果樹生產之影響. 作物、環境與生物資訊 5:196-203. 張哲嘉、林宗賢. 1998. 台灣番石榴生產之現況與改進. 中國園藝44(2):116-124. 陳敏祥. 1984. 臺灣番石榴之栽培管理與產期調節. 刊於:林信山編著. 果樹產期調節研討會專集. pp. 87-92. 臺中區農業改良場. 臺灣彰化. 黃明雅. 2010. 紅肉番石榴的介紹. 高雄農業專訊 71:12-13. 黃弼臣. 1979. 番石榴. 刊於: 梁鶚編著. 經濟果樹(下). pp. 133-150. 豐年社. 台灣台北. 黃馨瑩. 2011. 芒果栽培種耐逆境溫度篩選指標的建立. 國立中興大學園藝學系碩士論文. 臺灣臺中. 90pp. 國立科學博物館. 2012. 長在榕樹上的芭樂?-草莓番石榴. <http://www.nmns.edu.tw/public/BotanicalGarden/flowers/2009/summer/980623.htm> 葉士財、廖君達、郭建志、柯文華、白桂芳. 2008. 非生物性因子傷害. 刊於: 葉士財等編著. 中部地區番石榴病蟲及害物圖說. pp. 232-237. 行政院農業委員會臺中區農業改良場. 臺灣彰化. 葉士財、廖君達、郭建志、柯文華、白桂芳. 2012. 非病蟲害診斷及鑑定. 刊於: 葉士財等編著. 番石榴病蟲害診斷及鑑定. 行政院農業委員會臺中區農業改良場. 臺灣彰化. 農業試驗所果樹種原標本數位化. 2013a. 珍珠拔. <http://digifruit.tari.gov.tw/display.php?category=%E7%86%B1%E6%9E%9C&name=%E7%8F%8D%E7%8F%A0%E6%8B%94&id=Myrt11013001> 農業試驗所果樹種原標本數位化. 2013b. 草莓番石榴. <http://digifruit.tari.gov.tw/display.php?category=%E7%86%B1%E6%9E%9C&name=%E8%8D%89%E8%8E%93%E7%95%AA%E7%9F%B3%E6%A6%B4&id=Myrt11007001> 農業試驗所果樹種原標本數位化. 2013c. 竹葉芭樂. <http://digifruit.tari.gov.tw/display.php?category=%E7%86%B1%E6%9E%9C&name=%E7%AB%B9%E8%91%89%E8%8A%AD%E6%A8%82&id=Myrt11010001> 廖志翔. 1998. 全球氣候變遷對全球與台灣地區氣象環境之影響及因應策略. 刊於: 林俊義、楊純明編著. 氣候變遷對農作物生產之影響. pp. 7-32. 台灣省農業試驗所. 臺灣台中. 劉玠吟. 2004. 無籽番石榴之倍體數、花粉活力及雜交稔實率. 屏東科技大學農園生產系碩士論文. 台灣屏東. 93pp. 劉敏莉. 2012. 葉綠素螢光在作物耐熱性篩選之應用. 高雄區農業改良場研究彙報 21(1):1-15. ??、李?、曹碚生、??好. 2000. 高溫對黃瓜生殖生長及產量形成的影響. 園藝學報27(6):412-417. 潘美汶. 2010. 更年性與非更年性番石榴果實發育期間糖類代謝之研究. 國立中興大學園藝學系碩士論文. 臺灣臺中. 85pp. 潘瑞熾. 2006. 植物生?學. 藝軒圖書出版社. 臺灣臺北. 320pp. 謝明憲、?依昌、許涵鈞、?棟樑、王仕賢. 2008. 十字花科蔬菜耐熱育種及採種. 刊於:陳正次編著. 2008農業生技產業應用研討會專輯. pp. 67-78. 台南區農業改良場. 臺灣台南. 謝鴻業. 2005. 番石榴. 刊於:潘芝等編著. 台灣農家要覽農作篇(一)增修訂三版. pp. 61-68. 行政院農業委員會. 臺灣臺北. 謝鴻業、王智立、楊淑惠、王德男、劉政道、林慧玲、謝慶昌、陳幼光. 2006. 番石榴新品種台農1號(帝王拔)之育成. 農業試驗所技術服務 67:1-4. 謝鴻業. 2013. 台灣番石榴品種的發展趨勢. 園藝之友 160:15-19. Elsheery, N.I.、B. Wilske、曹坤芳. 2008. 夜間低溫對生長在兩種光強下兩個芒果品種的氣體交換和葉綠素螢光的影響. 雲南植物研究. 30(4):447-456. Agati, G., S. Meyer, P. Matteini, and Z.G. Cerovic. 2007. Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method. J. Agric. Food Chem. 55(4):1053-1061. Ahn, Y.J., A.K. Claussen, and J.L. Zimmerman. 2004. Genotypic differences in the heat-shock response and thermotolerance in four potato cultivars. Plant Sci. 166:901-911. Allen, D.J. and D.R. Ort. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6(1):36-42. Arteca, R.N. and J.M. Arteca. 2007. Heavy-metal-induced ethylene production in Arabidopsis thaliana. J. Plant Physiol. 164:1480-1488. Ashraf, M., M.M. Saeed, and M.J. Qureshi. 1994. Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environ. Exp. Bot. 34:275-283. Baker, N.R. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59(1):89-113. Blum, A., N. Klueva, and H.T. Nguyen. 2001. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117:117-123. Brestic, M., M. Zivcak, K. Olsovska, H. Kalaji, H. Shao, and K. Hakeem. 2014. Heat signaling and stress responses in photosynthesis. p. 241-256. In: K.R. Hakeem, R.U. Rehman, and I. Tahir (eds.), Plant signaling: Understanding the molecular crosstalk. Springer, India. Camejo, D., P. Rodr?guez, M. Angeles Morales, J. Miguel Dell'Amico, A. Torrecillas, and J.J. Alarc?n. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162(3):281-289. Castro-Vargas, H.I., L.I. Rodr?guez-Varela, S.R.S. Ferreira, and F. Parada-Alfonso. 2010. Extraction of phenolic fraction from guava seeds (Psidium guajava L.) using supercritical carbon dioxide and co-solvents. J. Supercrit. Fluids 51(3):319-324. Crafts-Brandner, S.J. and M.E. Salvucci. 2004. Analyzing the impact of high temperature and CO2 on net photosynthesis: Biochemical mechanisms, models and genomics. Field Crops Res. 90(1):75-85. da Cunha, R.L., M.D. Hubinger, A.C. Kawazoe Sato, and G.S. Vieira. 2012. Guava. p. 203-221. In: M. Siddiq (ed.), Tropical and subtropical fruits: Postharvest physiology, processing and packaging. Wiley-Blackwell, Oxford, UK. Dane, F., A.G. Hunter, and O.L. Chambliss. 1991. Fruit set, pollen fertility, and combining ability of selected tomato genotypes under hight-emperature field conditions. J. Amer. Soc. Hort. Sci. 116(5):906-910. Davey, M.W., E. Stals, B. Panis, J. Keulemans, and R.L. Swennen. 2005. High-throughput determination of malondialdehyde in plant tissues. Anal. Biochem. 347: 201-207. DeEll, J.R. and P.M.A. Toivonen. 1999. Chlorophyll fluorescence as an indicator of physiological changes in cold-stored broccoli after transfer to room temperature. J. Food Sci. 64(3):501-503. DeEll, J.R. and P.M.A. Toivonen. 2000. Chlorophyll fluorescence as a nondestructive indicator of broccoli quality during storage in modifiedatmosphere packaging. HortScience 35(2):256–259. Demirevska-Kepova, K., R. Holzer, L. Simova-Stoilova, and U. Feller. 2005. Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco activase in wheat leaves. Biol. Plant. 49(4):521-525. Distefano, G., A. Hedhly, G.L. Casas, S.L. Malfa, M. Herrero, and A. Gentile. 2012. Male–female interaction and temperature variation affect pollen performance in Citrus. Scientia Hort. 140:1-7. Draper, H.H. and M. Hadley. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 186:421-431. Fadzillah, N.M., V. Gill, R.P. Finch, and R.H. Burdon. 1996. Chilling, oxidative stress and antioxidant responses in shoot cultures of rice. Planta 199(4):552-556. Farnham, M.W. and T. Bjorkman. 2011. Breeding vegetables adapted to high temperatures:a case study with broccoli. HortScience 46:1093-1097. Feller, U., S.J. Crafts-Brandner, and M.E. Salvucci. 1998. Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of rubisco. Plant Physiol. 116(2):539-546. Field, R.J. 1981. The effect of low temperature on ethylene production by leaf tissue of Phaseolus vulgaris L. Ann. Bot. 47:215-223. Field, R.J. 1984. The Role of 1-aminocyclopropane-1-carboxylic acid in the control of low temperature induced ethylene production in leaf tissue of Phaseolus vulgaris L. Ann. Bot. 54:61-67. Gorbe, E., and A. Calatayud. 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Hort. 138:24-35. Gudkova, T.I. 1980. Physiological and cytological studies of the reasons for pollen sterility in spring wheat under low temperature. Nauch. Tr. Linengar. S Kh. In. Ta.394:103-108. Gulen, H. , and A. Eris. 2004. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 166:739–744. Guti?errez, R.M.P., S. Mitchell, R.V. Solis. 2008. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 117:1-27. Hakam, N., S. Khanizadeh, J.R. DeEll, and C. Richer. 2000. Assessing chilling tolerance in roses using chlorophyll fluorescence. HortScience 35(2):184–186. Hall, A.E. 1992. Breeding for heat tolerance. Plant Breed. Rev. 10:129-168. Hao, W. and R. Arora. 2009. Freezing tolerance and cold acclimation in guava. HortScience 44(5):1258-1266. Havaux, M. 1995. Temperature sensitivity of the photochemical function of photosynthesis in potato (Solanum tuberosum) and a cultivated andean hybrid (Solanum x juzepczukii). J. Plant Physiol. 146: 47-53. Hays, D.B., J.H. Do, R.E. Mason, G. Morgan, and S.A. Finlayson. 2007. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci. 172:1113-1123. Hedhly, A. 2011. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ. Exp. Bot. 74:9-16. Hedhly, A., J.I. Hormaza, and M. Herrero. 2003. The effect of temperature on stigmatic receptivity in sweet cherry (Prunus avium L.). Plant Cell Environ. 26:1673-1680. Hedhly, A., J.I. Hormaza, and M. Herrero. 2004. Effect of temperature on pollen tube kinetics and dynamics in sweet cherry, Prunus avium (Rosaceae). Amer. J. Bot. 91(4):558-564. Hedhly, A., J.I. Hormaza, and M. Herrero. 2008. Global warming and sexual plant reproduction. Trends Plant Sci. 14(1):30-36. Hirata, K., K. Chachin, and T. Iwata. 1987. Change of K+ leakage, free amino acid content and phenylpropanoid metabolism in water convolvulus (Ipomoea aquatica Forsk.) with reference to the occurrence of chilling injury. J. Jpn. Soc Hortic. Sci. 55(4):516-523. Hogan, J.D., E.E. Murray, and M.A. Harrison. 2006. Ethylene production as an indicator of stress conditions in hydroponically-grown strawberries. Scientia Hort. 110:311–318. Hsu, B.D. 2007. On the possibility of using a chlorophyll fluorescence parameter as an indirect indicator for the growth of Phalaenopsis seedlings. Plant Sci. 172(3):604-608. Huang, M. and Z. Guo. 2005. Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plant. 49(1):81-84. Huot, Y. and M. Babin. 2011. Overview of fluorescence protocols: Theory, basic concepts, and practice. p. 31-74. In: D.J. Suggett, O. Pr??il, and M.A. Borowitzka (eds.), Chlorophyll a fluorescence in aquatic sciences: Methods and applications. Springer, Netherlands. H?ve, K., I. Bichele, B. Rasulov, and ?. Niinemets. 2011. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ. 34(1):113-126. Iglesias-Acostaa, M., M.C. Martinez-Ballestaa, J.A. Teruelb, and M. Carvajala. 2010. The response of broccoli plants to high temperature and possible role of root aquaporins. Environ. Exp. Bot. 68:83-90. IPCC. 2007. Climate change 2007, impacts, adaptation and Vulnerability. Cambridge University Press. Cambridge, UK. 976pp. Ismail, A.M. and A.E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39:1762-1768. Jalink, H., A. Frandas, R.v.d. Schoor, and J.B. Bino. 1998. Chlorophyll fluorescence of the testa of Brassica oleracea seeds as an indicator of seed maturity and seed quality. Sci. Agric. 55:88-93. Janowiak, R. and K, Dorffling. 1995. Chilling-induced changes in the content of l-aminocyclopropane-1-carboxylic acid (ACC) and its N-malonyl conjugate (MACC) in seedlings of two maize inbreds differing in chilling tolerance. J. Plant Physiol. 147: 257-262. Jensen, R.G. 2000. Activation of Rubisco regulates photosynthesis at high temperature and CO2. PNAS 97(24):12937-12938. Jung, S., and K.L. Steffen. 1997. Influence of photosynthetic photon flux densities before and during long-term chilling on xanthophyll cycle and chlorophyll fluorescence quenching in leaves of tomato (Lycopersicon hirsutum). Physiol. Plant. 100: 958-966. Kader, A.A. 2002. Postharvest technology of horticultural crops. 3th ed. University of California. Oakland, California, USA. 535pp. Kiener, C.M. and W.J. Bramlage. 1981. Temperature effects on the activity of the alternative respiratory pathway in chill-sensitive Cucumis sativus. Plant Physiol. 68:1474-1478. Kolb, C.A., E. Wirth, W.M. Kaiser, A. Meister, M. Riederer, and E.E. Pf?ndel. 2006. Noninvasive evaluation of the degree of ripeness in grape berries (Vitis Vinifera L. cv. Bacchus and Silvaner) by chlorophyll fluorescence. J. Agric. Food Chem. 54(2):299-305. Kratsch, H.A. and R.R. Wise. 2000. The ultrastructure of chilling stress. Plant Cell Environ. 23:337-350. Larcher, W. 1994. Photosynthesis as a tool for indicating temperature stress events. p. 261-277. In: E.D. Schulze and M.M. Caldwell (eds.), Ecophysiology of photosynthesis. Springer, Berlin. Ledesma, N. A., M. Nakata, and N. Sugiyama. 2007. Effect of high temperature stress on the reproductive growth of strawberry cvs. 'Nyoho' and 'Toyonoka'. Scientia Hort. 116:186-193. Lee, D.H. and C.B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: In gel enzyme activity assays. Plant Sci. 159:75-85. Lindstrom, O.M. and J.V. Carter. 1985. Injury to potato leaves exposed to subzero temperatures in the absence of freezing. Planta 164(4):512-516. Liu, X. and B. Huang. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40(2):503-510. Lukatkin, A.S., A. Brazaityte, C. Bobinas, and P. Duchovskis. 2012. Chilling injury in chilling-sensitive plants: A review. Agriculture 99(2):111-124. Lurie, S., A. Handros, E. Faliik, and R. Shapira. 1996. Reversible inhibition of tomato fruit gene expression at high temperature. Plant Physiol. 110:1207-1214. Lweis, D.A. and L.L. Morris. 1956. Effect of chilling storage on respiration and deterioration of several sweet potato varieties. Pro. Amer. Soc. Hort. Sci. 68:421-428. Lyons, J.M., and J.K. Raison. 1970. Oxidative activity of mitochondria isolated form plant tissues sensitive and resistant to chilling injury. Plant Physiol. 45:386-389. Lyons, J.M. 1973. Chilling injury in plant. Annu. Rev. Plant Physiol. 24:455-466. Mao, L., H. Pang, G. Wang, and C. Zhu. 2007. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharvest Biol Technol. 44(1):42-47. Marcum, K.B. 1998. Cell membrane thermostability and whole plant heat tolerance of Kentucky bluegrass. Crop Sci. 38:1214-1218. Martineau, J.R., J.E. Specht, J.H. Williams, and C.Y. Sullivan. 1979. Temperature tolerance in soybean. I. Evaluation of technique for assessing cellular membrane thermostability. Crop Sci. 19:75-78. McKee, J. and A. J. Richards. 1998. The effect of temperature on reproduction in five Primula species. Ann. Bot. 82:359-374. McWilliam, J. R. 1980. Summary and synthesis—adaptation to high temperature stress. p. 444-446. In: N. C. Turner and P. J. Krammer (eds), Adaptaion of plants to high temperature stress. John Wiley, New York. Mencarelli, F., W.J. Lipton, and S.J. Peterson. 1983. Responses of 'Zucchini' squash to storage in low-O2 atmosphere at chilling and nonchlling temperatures. J. Amer. Soc. Hort. Sci. 108: 884-890. Mishra, A., K.B. Mishra, I.I. H?ermiller, A.G. Heyer, and L. Nedbal. 2011. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signal Behav. 6(2):301-310. Mishra, R.K. and G.S. Singhal. 1992. Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with peroxidation of thylakoid lipids. Plant Physiol. 98(1):1-6. Mishra, K.B., R. Iannacone, A. Petrozza, A. Mishra, N. Armentano, G.L. Vecchia, M. Trtilek, F. Cellini, and L. Nedbal. 2012. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci. 182: 79– 86. Molina-Bravo, B., C. Arellano, B.R. Sosinski, and G.E. Fernandez. 2011. A protocol to assess heat tolerance in a segregating population of raspberry using chlorophyll fluorescence. Scientia Hort. 130:524–530. Morgan, P.W. and M.C. Drew. 1997. Ethylene and plant responses to stress. Physiol. Plant. 100(3):620-630. Mubarakshina, M.M., B.N. Ivanov, I.A. Naydov, W. Hillier, M.R. Badger, and A. Krieger-Liszkay. 2010. Production and diffusion of chloroplastic H2O2 and its implication to signaling. J. Exp. Bot. 61(13):3577-3587. Munro, K.D., D.M. Hodges, J.M. DeLong, C.F. Forney, and D.N. Kristie. 2004. Low temperature effects on ubiquinone content, respiration rates and lipid peroxidation levels of etiolated seedlings of two differentially chilling-sensitive species. Physiol. Plant. 121(3):488-497. Noble, P.S. 1974. Temperature dependence of the permeability of chloroplast from chilling-sensitive and chilling resistant plants. Planta 115(4):369-372. Orduna, R.M.D. 2010. Climate change associated effects on grape and wine quality and production. Food Res. Int. 43:1844-1855. Park, E.J., Z. Jeknic, and T.H.H. Chen. 2006. Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol. 47(6):706-714. Patterson, B.D., T. Murata, and D. Graham . 1976. Electrolyte leakage induced by chilling in Passiflora species tolerant to different climates. Aust. J. Plant Physiol. 3(4):435-442. Paull, R.E. and O. Duarte. 2011. Guava. p. 91-122. In: R.E. Paull and O. Duarte(eds.), Tropical fruits volume 2. CABI, Wallingford, Oxfordshire, UK. Petkova,V, I. D., Denev, and D., Cholakov. 2007. Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters. Sci. Hortic. 111: 101-106. Piterkov?, J., L. Luhov?, B. Mieslerov?, A. Lebeda, and M. Pet?ivalsk?. 2013. Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Sci. 207(0):57-65. Pressman, E., M. M. Peet, and D. M. Pharr. 2002. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot. 90:631-636. Queiroz, C.G.S., A. Alonso, M. Mares-Guia, and A.C. Magalh?es. 1998. Chilling-induced changes in membrane fluidity and antioxidant enzyme activities in Coffea arabica L. roots. Biol. Plant. 41(3):403-413. Rasc?n-Chu, A., E. Carvajal-Mill?n, R. Garc??a-Estrada, J.H. Siller, J.J. Mart??nez, V.M. Guerrero, and A.A. Gardea. 2000. Chilling injury in husk tomato leaves as defined by scanning calorimetry. Thermochimi. Acta 349(1–2): 125-129. Ray, P.K. 2002. Guava. p. 143-155. In: P. K. Ray (ed.). Breeding tropical and subtropical fruits. Narosa Publishing House. India. Reddy, K.R. and V.G. Kakani. 2007. Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Scientia Hort. 112:130-135. Reyes, E. and P.H. Jennings. 1994. Response of cucumber (Cucumis sativus L.) and squash (Cucurbita pepo L. var. melopepo) roots to chilling stress during early stages of seedling development. J. Amer. Soc. Hort. Sci. 119(5): 964-970. Roh??ek, K. and M. Bart?k. 1999. Technique of the modulated chlorophyll fluorescence: Basic concepts, useful parameters, and some applications. Photosynthetica 37(3):339-363. Sagisaka, S. 1976. The occurrence of peroxide in perennial plant, Populus gelrica. Plant Physiol. 57(2):308-309. Sakata, T., T. Oshino, S. Miura, M. Tomabechi, Y. Tsunaga, N. Higashitani, Y. Miyazawa, H. Takahashi, M. Watanabe, and A. Higashitani. 2010. Auxins reverse plant male sterility caused by high temperatures. PNAS 107(19): 8569-8574. Santos, C.A.F. 2012. Proceedings of the third international symposium on guava and other Myrtraceae. Acta Hort. 959. ISHS, Petrolina, PE, Brazil. 223pp. Sanzol, J. and M. Herrero. 2001. The 'effective pollination period' in fruit trees. Scientia Hort. 90(1-2):1-17 Sato, S., M.M. Peet, and J.F. Thomas. 2002. Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J. Exp. Bot. 53:1187-1195. Sinsawat, V., J. Leipner, P. Stamp, and Y. Fracheboud. 2004. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ. Exp. Bot. 52(2):123-129. Slesak, I., M. Libik, B. Karpinska, S. Karpinski, and Z. Miszalski. 2007. The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses. Acta Biochim. Pol. 54(1):39-50. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. 2007. Climate change 2007: The physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York. Steed, G.L. and M.A. Harrision. 1993. Regulation of ethylene biosynthesis after short-term heat treatment in etiolated pea stems. Physiol. Plant. 87:103-107. Stern, R.A., and S. Gazit. 1998. Pollen viability in lychee. J. Amer. Soc. Hort. Sci. 123(1):41-46. Sthapit, B., V. R. Rao, and S. Sthapit. 2012. Tropical fruit tree species and climate change. 1st ed. Bioversity International, New Delhi, India. 137pp. Sullivan, C.Y. 1972. Mechanisms of heat and drought resistance in grain sorghum and methods of measurement. p. 247-264. In: N.G.P. Rao and L.R. House (eds.), Sorghum in the seventies. Oxford & IBH Publishing Co., New Delhi. Sukhvibul, N., S.E. Hetherington, M.K. Smith, V. Vithanage, A.W. Whiley, and M.K. Smith. 2000. Effect of temperature on pollen germination, pollen tube growth and seed development in mango (Mangifera indica L.). Acta Hort. 509:609–616. Sukhvibul, N., A.W. Whiley, and M.K. Smith. 2005. Effect of temperature on seed and fruit development in three mango (Mangifera indica L.) cultivars. Scientia Hort. 105(4):467-474. Sukhvibul, N., A.W. Whiley, M.K. Smith, S.E. Hetherington, and V. Vithanage. 1999. Effect of temperature on inflorescence and floral development in four mango (Mangifera indica L.) cultivars. Scientia Hort. 82(1-2):67-84. Taiz, L. and E. Zeiger. 2010. Plant Physiology. 5th ed. Sinauer Associates. 782pp. Tanino, K.K. and B.D. McKersie. 1985. Injury within the crown of winter wheat seedlings after freezing and icing stress. Can. J. Bot. 63(3):432-436. Thakur, P., S. Kumar, J. A. Malik, J.D. Berger, and H. Nayyar. 2010. Cold stress effects on reproductive development in grain crops: An overview. Environ. Exp. Bot. 67:429-443. Toivonen, P.M.A. 1992. Chlorophyll fluorescence as a nondestructive indicator of freshness in harvested broccoli. HortScience 27(9):1014-1015. Urbano Bron, I., R. Vasconcelos Ribeiro, M. Azzolini, A. Pedro Jacomino, and E. Caruso Machado. 2004. Chlorophyll fluorescence as a tool to evaluate the ripening of 'Golden' papaya fruit. Postharvest Biol. Technol. 33(2):163-173. van Kooten, O. and J.H. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25(3):147-150. Viti, R., L. Andreini, D. Ruiz, J. Egea, S. Bartolini, C. Iacona, and J.A. Campoy. 2010. Effect of climatic conditions on the overcoming of dormancy in apricot flower buds in two Mediterranean areas: Murcia (Spain) and Tuscany (Italy). Scientia Hort. 124:217-224. Wang, C.H., D.M. Yeh, and C.S. Sheu. 2008. Heat tolerance and flowering-heat-delay sensitivity in relation to cell membrane thermostability in chrysanthemum. J. Amer. Soc. Hort. Sci. 133(6):754-759. Wang, C.Y., and D.O. Adams. 1982. Chilling-induced ethylene production in cucumbers (Cucumis sativus L.). Plant Physiol. 69:424-427. Wang, C.Y. 1990. Chilling injury of horticultural crops. CRC Press. Boca Raton, Florida, USA. 313pp. Weng, J.H. and M.F. Lai. 2005. Estimating heat tolerance among plant species by two chlorophyll fluorescence parameters. Photosynthetica 43 (3): 439-444. White, M.A., N.S. Diffenbaugh, G.V. Jones, J.S. Pal, and F. Giorgi. 2006. Extreme heat reduces and shifts United States premium wine production in the 21th century. PNAS 103(30):11217-11222. Willits, D.H. and M.M. Peet. 2001. Measurement of chlorophyll fluorescence as a heat stress indicator in tomato: laboratory and greenhouse comparisons. J. Amer. Soc. Hort. Sci. 126(2):188–194. Wright, M. and E.W. Simon. 1973. Chilling injury in cucumber leaves. J. Exp. Bot. 24(2): 400-411. Wu, M.T. and S.J. Wallner. 1993. Heat stress responses in cultured plant cells: Development and comparison of viability tests. Plant Physiol. 72:817-820. Yamada, M., T. Hidaka, and H. Fukamachi. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Hort. 67:39-48. Yamori, W., K. Noguchi, K. Hikosaka, and I. Terashima. 2009. Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species Plant Cell Physiol. 50(2): 203–215. Yan, B., Q. Dai, X. Liu, S. Huang, and Z. Wang. 1996. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179(2):261-268. Yeh, D.M. and H.F. Lin. 2003. Thermostability of cell membranes as a measure of heat tolerance and relationship to flowering delay in chrysanthemum. J. Amer. Soc. Hort. Sci. 128(5):656-660. Young, L.W., R.W. Wilen, and P.C. Bonham-Smith. 2004. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55:485-495. Zhang, J.H., W.D. Huang, Y.P. Liu, and Q.H. Pan. 2005. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J. Integr. Plant Biol. 47(8):959-970. Zhao, X., Y. Nishimura, Y. Fukumoto, and J. Li. 2011. Effect of high temperature on active oxygen species, senescence and photosynthetic properties in cucumber leaves. Environ. Exp. Bot. 70(2–3):212-216. Zhou, W. and M. Leul. 1999. Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul. 27(2):99-104. Zinn, K.E., M. Tunc-Ozdemir, and J.F. Harper. 2010. Temperature stress and plant sexual reproduction: uncovering the weakest links. J. Exp. Bot. 61(7):1959-1968. Zribi, L., G. Fatma, R. Fatma, R. Salwa, N. Hassan, and R.M. N?jib. 2009. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato 'Solanum lycopersicum (variety Rio Grande)'. Scientia Hort. 120(3):367-372.
摘要: Temperature is one of the important environmental factors that effects growth and distribution of crop. With climate change getting more severe, screening for heat and cold tolerance genotypes using rapid and effective methods is very important in the guava breeding and selection process. Because photosynthesis is very sensitive to temperature, it was used in these experiments to detect the changes in chlorophyll fluorescence parameters (Fv/Fm) of eighteen guava cultivars leaves exposed to high or low temperature stresses. By treating the leaf with 50℃ for 1 hour or 1℃ for 48 hours then rewarming at 25℃ for 2 hours, we selected 6 cultivars for further screening, including heat-tolerant cultivar 'Hawaii', heat-intermediate cultivar 'Diwang' and heat-sensitive cultivar 'Jen-ju', cold-tolerant cultivars 'Strawberry', 'Pakistani' and cold-sensitive cultivar 'Shy-ji'. In further screening, we investigate (1) whether other physiological responses of these cultivar undergoing temperature stress have correlation with chlorophyll fluorescence or not (2) whether there are discernable differences between the Fv/Fm of plant and detached leaf and whether changes of appearance will occur in plant or detached leaf as a reaction to changes in Fv/Fm and (3) whether temperature tolerance can be inherited in selfed S1. The results indicated that in high temperature stress experiments, stress disorders effected both 'Jen-ju' and 'Hawaii' but appear earlier in 'Jen-ju' than in 'Hawaii'. The electrolyte leakage of 'Jen-Ju' was more significant than in 'Hawaii' and the Fv/Fm value declined much more than the heat-tolerant 'Hawaii'. In contrast, ethylene production and respiration rate of 'Jen-ju' were inhibited much more than in 'Hawaii' and pollen germination also decreased more at 37℃ and 40℃.In low temperature stress experiments, the electrolyte leakage, respiration rate and malondialdehyde content of the cold-sensitive cultivar 'Shy-ji' were elevated significantly after rewarming at 25℃ while Fv/Fm value declined much more than 'Pakistani'. In contrast, the ethylene production of 'Shy-ji' was inhibited much more than 'Pakistani'. Pollen germination and pollen tube length at 12℃ and 15℃also decreased more than 'Pakistani'. Data showed that 'Pakistani' has greater temperature homeostasis in all physiological responses than 'Shy-ji'. The results indicated that whether guava leaves underwent heat or cold stress experiments, physiological responses all showed good positive correlation with chlorophyll fluorescence. In the intact-plant experiment, the heat-intermediate cultivar 'Diwang' and cold-tolerant cultivars 'Strawberry' and 'Pakistani' maintained higher chlorophyll fluorescence than heat-sensitive cultivar 'Jen-ju' and cold-sensitive cultivars 'Shy-ji' respectively. The appearance of 'Diwang', 'Strawberry' and 'Pakistani' was less effected by high or low temperature stress. Response of both detached leaf and intact plants were similar. Initial testing of Fv/Fm values in the inheritance experiments showed a cluster of high values in selfed S1 generation. After temperature stress treatments, data revealed that Fv/Fm values were spread across the lower range of values. This allowed for selection of temperature tolerant S1. Final results show that Fv/Fm values of 'Hawaii' population were significantly higher than in 'Jen-ju' population and Fv/Fm values of 'Pakistani' population were significantly higher than in 'Shy-ji' population. It suggests that heat or cold tolerance can be inherited by the selfed S1 population. Overall, the result indicated that chlorophyll fluorescence can be used as a non-destructive physiological indicator in temperature stress tolerance of guava, can increase the efficiency of breeding selection and can quickly select out the temperature tolerant species.
溫度是影響作物產量和地理分佈的重要環境因素之一,面對全球氣候變遷日益嚴重,於育種或選種中快速有效的篩選出耐熱或耐寒種原是相當重要的。利用光合作用對溫度逆境相當敏感的特性,本試驗監測18種番石榴品種於高溫或低溫逆境中的葉片葉綠素螢光參數Fv/Fm值之變化,以50℃高溫1小時、1℃低溫48小時後回溫25℃中2小時的溫度篩選條件,選出耐熱性品種'夏威夷'、耐熱中間品種'帝王'、不耐熱性品種'珍珠';耐低溫品種'榕葉'、 '巴基斯坦',以及低溫敏感品種'世紀',並進一步探討這些品種於高溫或低溫逆境中其他生理指標表現是否與葉綠素螢光Fv/Fm值具相關性、整株與離體葉片的反應是否一致,及耐熱或耐寒性狀遺傳狀況。 結果顯示,經測定離體葉片葉綠素螢光Fv/Fm值篩選出之不耐熱性品種'珍珠',於高溫處理後其電解質滲漏率較耐熱品種'夏威夷'高,而乙烯生成率、呼吸率受抑制情形較嚴重,花粉萌芽率於37℃及40℃高溫下亦顯著下降,且前述高溫引起的生理障礙出現的時間點皆早於'夏威夷'品種。在低溫方面,經測定離體葉片葉綠素螢光Fv/Fm值篩選出之不耐低溫品種'世紀',於低溫處理回溫後其電解質滲漏率、呼吸率、丙二醛含量較耐低溫品種'巴基斯坦'高,而乙烯生成率受抑制情形較早,花粉於12℃及15℃低溫環境中培養萌芽率與花粉管長度亦顯著降低,'巴基斯坦'品種則在所有測定中變化較小,維持較穩定的狀態。顯示不論是高溫或低溫逆境下,其他生理指標變化趨勢皆與葉綠素螢光Fv/Fm值篩選結果相符。而在整株實驗中,耐熱中間品種'帝王'與耐低溫品種'榕葉'、'巴基斯坦'葉綠素螢光Fv/Fm值分別高於不耐熱性品種'珍珠'、低溫敏感品種'世紀',且'帝王'、 '榕葉'、'巴基斯坦'植株外觀亦較不受溫度逆境所影響,與離體葉片檢測結果相似。在子代耐性遺傳部分,以溫度逆境處理後,可分散子代族群葉綠素螢光的表現,並可得知耐熱性狀與耐低溫性狀可遺傳給子代,即'夏威夷' 品種子代葉綠素螢光值高於'珍珠' 品種子代,'巴基斯坦' 品種子代葉綠素螢光值高於'世紀' 品種子代。因此整體而言,葉綠素螢光Fv/Fm可作為番石榴在溫度逆境下非破壞性生理指標,可加速育種選拔效率,快速篩選出具有耐溫度逆境的品種。
URI: http://hdl.handle.net/11455/89215
其他識別: U0005-2811201416190190
文章公開時間: 2017-08-31
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.