Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89216
標題: 葉綠素螢光檢測法評估觀賞植物低光環境適應性之研究
A Study of Low-light Environmental Adaptation in Ornamental Plants by Using Chlorophyll Fluorescence Measurement
作者: Chi-Wei Liao
廖季薇
關鍵字: 室內綠化
低光環境
光需求
葉綠素螢光
快速光反應曲線
indoor greening
low-light environment
light demand
chlorophyll fluorescence
rapid light curve
引用: 參考文獻 一、 中文部分 李萬成。1999。某醫院室內空氣品質評估。臺北醫學大學公共衛生學系暨研究所學位論文。 陳彥宇。2007。常見室內植物對甲醛及二氧化碳之吸收及反應。臺灣大學植物病理學研究所碩士學位論文。 葉德銘。2007。淨化室內空氣之植物應用及管理手冊。行政院環境保護署。192pp.。 二、 英文部分 Aranda, I., L. Gil, and J. Pardos, 2004. Improvement of growth conditions and gas exchange of Fagus sylvatica L. seedlings planted below a recently thinned Pinus sylvestris L. stand. Trees 18:211-220. Baker, N. R., 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:89-113. Beer, S., B. Vilenkin, A. Weil, M. Veste, L. Susel, and A. Eshel, 1998. Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Benecke, U., E.-D. Schulze, R. Matyssek, and W. Havranek, 1981. Environmental control of CO2-assimilation and leaf conductance in Larix decidua Mill. Oecologia 50:54-61. D'Ambrosio, N., C. Arena, and A. V. De Santo, 2006. Temperature response of photosynthesis, excitation energy dissipation and alternative electron sinks to carbon assimilation in Beta vulgaris L. Environmental and Experimental Botany 55:248-257. Denslow, J. S., J. C. Schultz, P. M. Vitousek, and B. R. Strain, 1990. Growth responses of tropical shrubs to treefall gap environments. Ecology:165-179. Epron, D., E. Dreyer, and N. Breda, 1992. Photosynthesis of oak trees [Quercus petraea (Matt.) Liebl.] during drought under field conditions: diurnal course of net CO2 assimilation and photochemical efficiency of photosystem II. Plant, Cell & Environment 15:809-820. Evans, J. and H. Poorter, 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment 24:755-767. Falkowski, P. and J. Raven, 1997. Aquatic photosynthesis. Flexas, J., J. M. Escalona, S. Evain, J. Gul?as, I. Moya, C. B. Osmond, and H. Medrano, 2002. Steady?state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water?stress in C3 plants. Physiologia Plantarum 114:231-240. Gamon, J. and R. Pearcy, 1989. Leaf movement, stress avoidance and photosynthesis in Vitis californica. Oecologia 79:475-481. Genty, B., J.-M. Briantais, and N. R. Baker, 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects 990:87-92. Gould, K. S., K. R. Markham, R. H. Smith, and J. J. Goris, 2000. Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. Journal of Experimental Botany 51:1107-1115. Groom, Q. J. and N. R. Baker, 1992. Analysis of light-induced depressions of photosynthesis in leaves of a wheat crop during the winter. Plant physiology 100:1217-1223. Guerrero, G., 1990. Trends in Photosynthesis Research: Advanced Course, Palma de Mallorca (Spain), 23 - 29 September 1990, Progra and Lectures. Institut d'Estudis Avan?ats de les Illes Balears (UIB-CSIC). Harbinson, J., B. Genty, and N. R. Baker, 1990. The relationship between CO2 assimilation and electron transport in leaves. Photosynthesis Research 25:213-224. Harrison, W. and T. Platt, 1986. Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar biology 5:153-164. Haupt, W. and D.-P. H?der, 1994. Photomovement, p. 707-732. In: R.E. Kendrick and G.H.M. Kronenberg (eds.), Photomorphogenesis in Plants. Springer Netherlands. Henry, H. A. and S. C. Thomas, 2002. Interactive effects of lateral shade and wind on stem allometry, biomass allocation, and mechanical stability in Abutilon theophrasti (Malvaceae). American Journal of Botany 89:1609-1615. Hirotsu, N., A. Makino, S. Yokota, and T. Mae, 2005. The photosynthetic properties of rice leaves treated with low temperature and high irradiance. Plant and cell physiology 46:1377-1383. Hopkins, W. G. and N. P. H?ner, 2008. Introduction to plant physiology. 4th Edition ed. Wiley New York. Huante, P. and E. Rinc?n, 1998. Responses to light changes in tropical deciduous woody seedlings with contrasting growth rates. Oecologia 113:53-66. Kato, M. C., K. Hikosaka, and T. Hirose, 2002. Photoinactivation and recovery of photosystem II in Chenopodium album leaves grown at different levels of irradiance and nitrogen availability. Functional plant biology 29:787-795. Kitajima, K., 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419-428. Kitajima, K. and K. Hogan, 2003. Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant, cell & environment 26:857-865. Krall, J. and G. Edwards, 1990. Quantum yields of photosystem II electron transport and carbon dioxide fixation in C4 plants. Functional Plant Biology 17:579-588. Krall, J. and G. Edwards, 1991. Environmental effects on the relationship between the quantum yields of carbon assimilation and in vivo PSII electron transport in maize. Functional Plant Biology 18:267-278. Krall, J., G. Edwards, and M. Ku, 1991. Quantum yield of photosystem II and efficiency of CO2 fixation in Flaveria (Asteraceae) species under varying light and CO2. Functional Plant Biology 18:369-383. Krall, J. P. and G. E. Edwards, 1992. Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum 86:180-187. Lambers, H. and H. Poorter, 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Larcher, W., 1994. ?kophysiologie der pflanzen. Eugen Ulmer Stuttgart. Lee, D. W., R. A. Bone, S. L. Tarsis, and D. Storch, 1990. Correlates of leaf optical properties in tropical forest sun and extreme-shade plants. American Journal of Botany:370-380. LI, X., C.-g. REN, M. WANG, J. SHENG, and J.-c. ZHENG, 2010. Response of Photosynthesis of Leaves to Light and Temperature in Eichhornia crassipes in Jiangsu Province [J]. Jiangsu Journal of Agricultural Sciences 5:008. Lichtenthaler, H., C. Buschmann, and M. Knapp, 2005. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43:379-393. Lichtenthaler, H. K., 1996. Vegetation stress: an introduction to the stress concept in plants. Journal of plant physiology 148:4-14. Martinez-Carrasco, R., J. Sanchez-Rodriguez, and P. Perez, 2002. Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia Forst. and Forst. Photosynthetica 40:363-368. Maxwell, K. and G. N. Johnson, 2000. Chlorophyll fluorescence—a practical guide. Journal of experimental botany 51:659-668. Muraoka, H., Y. Tang, H. Koizumi, and I. Washitani, 2002. Effects of light and soil water availability on leaf photosynthesis and growth of Arisaema heterophyllum, a riparian forest understorey plant. Journal of plant research 115:419-427. Neill, S. and K. S. Gould, 2000. Optical properties of leaves in relation to anthocyanin concentration and distribution. Canadian Journal of Botany 77:1777-1782. Niinemets, ?. and F. Valladares, 2004. Photosynthetic Acclimation to Simultaneous and Interacting Environmental Stresses Along Natural Light Gradients: Optimality and Constraints. Plant Biology 6:254-268. Niinemets, ?. and O. Kull, 1998. Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Tree Physiology 18:467-479. ?gren, E. and M. Sj?str?m, 1990. Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy. Planta 181:560-567. Olesen, B. W., 2005. Indoor environment-health-comfort and productivity. Procedings of Clima. Orwell, R. L., R. A. Wood, M. D. Burchett, J. Tarran, and F. Torpy, 2006. The potted-plant microcosm substantially reduces indoor air VOC pollution: II. Laboratory study. Water, Air, and Soil Pollution 177:59-80. Pandey, S., S. Kumar, and P. Nagar, 2003. Photosynthetic performance of Ginkgo biloba L. grown under high and low irradiance. Photosynthetica 41:505-511. Ralph, P. J. and R. Gademann, 2005. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany 82:222-237. Rascher, U., M. Liebig, and U. L?ttge, 2000. Evaluation of instant light?response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell & Environment 23:1397-1405. Rehwagen, M., U. Schlink, and O. Herbarth, 2003. Seasonal cycle of VOCs in apartments. Indoor Air 13:283-291. Robakowski, P., P. Montpied, and E. Dreyer, 2003. Plasticity of morphological and physiological traits in response to different levels of irradiance in seedlings of silver fir (Abies alba Mill). Trees 17:431-441. Roh??ek, K., 2002. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13-29. Schreiber, U., 2004. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview, p. 279-319, Chlorophyll a Fluorescence. Springer. Souza, R., E. Machado, J. Silva, A. Lag?a, and J. Silveira, 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea ( Vigna unguiculata) during water stress and recovery. Environmental and experimental botany 51:45-56. Sultan, S. E., 2000. Phenotypic plasticity for plant development, function and life history. Trends in plant science 5:537-542. Taiz, L. and E. Zeiger, 2010. Plant Physiology. Sinauer Associates, Incorporated. Valladares, F., J. Chico, I. Aranda, L. Balaguer, P. Dizengremel, E. Manrique, and E. Dreyer, 2002. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16:395-403. Valladares, F. and ?. Niinemets, 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics 39:237. Valladares, F. and R. Pearcy, 1997. Interactions between water stress, sun?shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant, Cell & Environment 20:25-36. Valladares, F., S. J. Wright, E. Lasso, K. Kitajima, and R. W. Pearcy, 2000. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81:1925-1936. van Mieghem, F., K. Brettel, B. Hillman, A. Kamlowski, A. W. Rutherford, and E. Schlodder, 1995. Charge recombination reactions in photosystem II. 1. Yields, recombination pathways, and kinetics of the primary pair. Biochemistry 34:4798-4813. Weschler, C. J. and W. W. Nazaroff, 2008. Semivolatile organic compounds in indoor environments. Atmospheric Environment 42:9018-9040. White, A. J. and C. Critchley, 1999. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynthesis Research 59:63-72. WHO, 1986. Indoor Air Quality Research: Report on a WHO Meeting, Stockholm, 27-31 August 1984. World Health Organization. Regional Office for Europe, Copenhagen Wolverton, B., 1997. How to grow fresh air: 50 houseplants that purify your home or office. Penguin Books. Wolverton, B., R. C. McDonald, and E. Watkins, 1984. Foliage plants for removing indoor air pollutants from energy-efficient homes. Economic Botany 38:224-228. Wolverton, B. and J. D. Wolverton, 1993. Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. Journal of the Mississippi Academy of Sciences 38:11-15. Wolverton, B. and J. D. Wolverton, 1996. Interior plants: Their influence on airborne microbes inside energy-efficient buildings. Journal of the Mississippi Academy of Sciences 41:99-105. Wolverton, B. C., A. Johnson, and K. Bounds, 1989. Interior landscape plants for indoor air pollution abatement. Xu, S.-M., L.-X. Liu, K. Woo, and D.-L. Wang, 2007. Changes in photosynthesis, xanthophyll cycle, and sugar accumulation in two North Australia tropical species differing in leaf angles. Photosynthetica 45:348-354. Zabiega?a, B., 2006. Organic Compounds in Indoor Environments. Polish Journal of Environmental Studies 15. Zhang, S., K. Ma, and L. Chen, 2003. Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. Environmental and Experimental Botany 49:121-133. Zhang, Z.-w., B.-y. Zhang, H.-f. Tong, and L. Fang, 2010. Photosynthetic LCP and LSP of different grapevine cultivars. Journal of Northwest Forestry University 1:008. 三、 網路資料 國家標準(CNS)網路服務系統 http://www.cnsonline.com.tw/
摘要: With the intensive use of urban land increased, usage of basement space has increased dramatically, such as hospitals, offices, shopping malls and residential. These closed indoor spaces often become a place that brings contaminated gases and pathogens together. While modern people spend much longer time in indoor space than outdoor space, it highlights the close relationship between indoor environmental quality and human life. There are a large number of studies indicate that indoor greening can purify the air, inhibit bacteria, relax mind, reduce fatigue, beautify the environment, and to improve the quality of life, enhance physical and mental health. There are lots of difficult points in indoor greening. Light supply is a crucial key to indoor greening. As a result of indoor lighting that must be considered human visible comfort and energy consumption of illumination, this experiments adopt normal light intensity of indoor lighting to treat 50 different species of plants. These plants treated with two light intensity levels and the parameters measured by chlorophyll fluorescence meter to discuss and investigate light demand characteristics and photosynthesis characteristics of the different plants after low-light acclimation. The result revealed that 37 species of plants could be adapted to light intensity of 8~12 μmol m-2s-1, light demand of 8 species of plants was 18~20 μmol m-2s-1, and 5 species of plants need much more light intensity that is higher than 18~20 μmol m-2s-1. In this experiment, the plants of Araceae and Agavaceae are more adaptive than the plants of Acanthaceae and Marantaceae in low-light environment which is 8~12 μmol m-2s-1.
隨著都市土地使用的密集度增高,如地下室等密閉室內空間的使用率也大幅提升,其中包括醫院、辦公空間、商場、住宅等。現代人們在室內活動的時間遠大於戶外,但這些密閉室內空間常成為汙染氣體和病原菌匯聚的場所,因此室內環境品質的改善與人類健康密切相關。目前已有大量研究指出室內綠化能淨化空氣、抑制病原菌、舒緩心靈、減輕疲?、美化環境,進而提高生活品質、增進身心健康。 室內環境植物的栽植中有多項困難點。在眾多問題之中,光源的供給被視為重要關鍵。由於室內照明需考量人類視覺感受的舒適度與照明設備的能源支出,本研究採用一般室內光照的光強度對五十種植物作低光處理試驗。藉由兩種光強度處理與葉綠素螢光分析測定之數值,探討不同植物的光需求特性與低光環境馴化後的光合作用特性。 結果顯示能適應8?12μmol m-2s-1光強度的植物有三十七種;需要18?20μmol m-2s-1光強度的植物有八種;對光強度需求大於18?20μmol m-2s-1的植物有五種。試驗植物中,天南星科與竹芋科的植物普遍比龍舌蘭科與爵床科的植物更能適應8?12μmol m-2s-1的低光環境。
URI: http://hdl.handle.net/11455/89216
其他識別: U0005-2811201416195670
文章公開時間: 2016-08-31
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.