Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89219
標題: 蝴蝶蘭Phalaenopsis Sogo Yukidan 'V3' 營養芽增殖階段的氮需求與營養動態調查
Nitrogen requirements of in vitro multiplication stage and investigation of nutrient dynamic in Phalaenopsis Sogo Yukidan 'V3'
作者: Yu-Yun Wu
吳毓紜
關鍵字: 蝴蝶蘭
營養

Phalaenopsis
nutrient
nitrogen
引用: 王斐能、張耿衡、謝廷芳、鍾仁賜. 2008. 三種不同配方之肥料對臺灣白花蝴蝶蘭營養生長與養分吸收之影響. 臺灣園藝 54(3):231-246. 吳宣萱、陳福旗. 2008a. 蝴蝶蘭與朵麗蝶蘭花梗芽之誘導與刻傷處理對芽體增殖之影響. 臺灣園藝 54(1):67-74. 吳宣萱、陳福旗. 2008b. 蝴蝶蘭與朵麗蝶蘭花梗芽增殖之影響. 臺灣園藝 54(2):151-159. 李哖、王明吉. 1997. 白花蝴蝶蘭由幼年到成熟相之礦物成分和碳水化合物之變化. 中國園藝 43(4):295-305. 林瑞松. 1981. 蝴蝶蘭根組識培養之研究. 中華農業研究. 30(2):141-145. 涂美智、李哖. 1988. 氮素、蔗糖濃度及光強度對蝴蝶蘭種子發芽及幼苗生長之影響. 中國園藝 34(4):293-302. 張珈錡、廖玉珠. 2012. 植物對硝酸態氮和銨態氮之吸收與利用. 種苗科技專訊. 76:16-19. 張耿衡、王斐能、謝庭芳、鍾仁賜. 2008. 三種不同配方之肥料對蝴蝶蘭小苗營養生長與養分吸收之影響. 臺灣農業化學與食品科學 46(2):57-69. 張耀乾. 2007. 蝴蝶蘭的生育環境. p. 1-6. 刊於:沈再木、徐善德主編. 蝴蝶蘭栽培. 國立嘉義大學. 嘉義. 曹進義、陳威臣、吳明哲、夏奇鈮. 2008. 花梗發育時期、花梗節位及6-benzyladenine濃度對蝴蝶蘭花梗芽微體繁殖芽體誘導之影響. 臺灣園藝 54(3):199-209. 曹進義、陳威臣、夏奇鈮. 2011. 由花梗培養切取之培植體種類及6-Benzyladenine濃度對蝴蝶蘭芽體分化之影響. 臺灣園藝 57(1):31-42. 許家嘉、陳福旗. 2003. 以蝴蝶蘭白化葉片誘導擬原球體與植株再生. 中國園藝 49(4):335-341. 陳福旗. 2007a. 熱帶蘭花生理學. 睿煜出版社. 屏東. 台灣 陳麗筠. 2007b. 蝴蝶蘭栽培之養分管理. p. 35-40. 刊於:沈再木、徐善德主編. 蝴蝶蘭栽培. 國立嘉義大學. 嘉義. 彭穎君、鍾仁賜、何聖賓、張耀乾. 2010. 銨態與硝酸態氮比例影響大白花蝴蝶蘭營養與生殖生長. 臺灣園藝 56(1):45-56. 彭穎君. 2008. 大白花蝴蝶蘭'V3'對氮素之吸收、運移及利用. 國立臺灣大學園藝學系碩士論文. 台北. 楊玉婷. 2010. 全球蘭花發展現況與未來展望. 台灣經濟研究月刊 33(3):36-41 楊光盛、孫華慰、葉德銘、林學正. 1995. 數種高經濟花卉作物肥料之開發應用研究(二)─即溶花卉肥料. 中國園藝 41(1):41-53. 雷欣怡. 2007. 蝴蝶蘭花期礦物元素組成變化與肥料需求. 國立臺灣大學園藝學系碩士論文. 台北. 趙欣燕. 2009. 台灣蝴蝶蘭生產型態之研究-以台南區為例. 國立臺灣師範大學地理學系碩士論文. 台北. 羅聖賢. 2008. 臺灣原生蝴蝶蘭碳代謝及光合特性之研究. 行政院農業委員會臺東區農業改良場研究彙報 18:15-44. 蔣若珊. 2012. 蝴蝶蘭組培苗品質及礦物元素分析. 國立中興大學園藝學系碩士論文. 台中. Abenavoli, M. R., A. Sorgona, M. Sidari, M. Badiani, and A. Fuggi. 2003. Coumarin inhibits the growth of carrot (Daucus carota L. cv. Saint Valery) cells in suspension culture. Journal of Plant Physiology 160(3):227-237. Allen, S. and J. A. Raven. 1987. Intracellular pH regulation in ricinus communis grown with ammonium or nitrate as n source: the role of long distance transport. Journal of Experimental Botany 38(4):580-596. Argo, W. R. and J. A. Biernbaum. 1997. Lime, water sources, and fertilizer nitrogen form affect medium pH and nitrogen accumulation and uptake. HortScience 32:71-74. Armengaud, P., R. Sulpice, A. J. Miller, M. Stitt, A. Amtmann, and Y. Gibon. 2009. Multilevel Analysis of Primary Metabolism Provides New Insights into the Role of Potassium Nutrition for Glycolysis and Nitrogen Assimilation in Arabidopsis Roots. Plant Physiology. 150(2):772-785. Ashihara, H., T. Horikosi, X.-N. Li, K. Sagishima, and Y. Yamashita. 1988. Profiles of enzymes involved in glycolysis in Catharanthus roseus cells in batch suspension culture. Journal of Plant Physiology 133(1):38-45. Association of Analytical Chemist (AOAC). 1995. Metal in plants 975.03. In: Official methods of analysis of AOAC International. 18th ed. Arlington, Virginia. Avadhani, P. N., C. J. Goh, A. N. Rao and J. Arditti. 1982. Carbon fixation in orchids, p.173-193. In: Orchid Biology: Reviews and Perspective II. J. Arditti(ed.). Comell Univ. Press, New York. Bao, X. S., Q. S. Shun, L. Z. Chen. 2001. p.1-75. Chinese Medicinal Dendrobium. Fudan University Press and Shanghai Medical University. Press. Benzing, D. H. and A. Renfrow. 1974. The mineral nutrition of Bromeliaceae. Botanical Gazette 134:281–288. Bergman, F. J. 2002. Urea—Evaluating a source of nitrogen for Phalaenopsis. Orchids. Bernier, G., J. M. Kinet, A. Jacqmard, A. Havelange, and M. Bodson. 1977. Cytokinin as a Possible Component of the Floral Stimulus in Sinapis alba. Plant Physiol 60(2):282-285. Britto, D. T. and H. J. Kronzucker. 2002. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology 159(6):567-584. Buchanan, B. B., W. Gruissem, and R. L. Jones. 2000. Nitrogen and sulfur. Biochemistry and Molecular Biology. Buchanan-Wollaston, V., S. Earl, E. Harrison, E. Mathas, S. Navabpour, T. Page, and D. Pink. 2003. The molecular analysis of leaf senescence--a genomics approach. Plant Biotechnology Journal 1(1):3-22. Buckeridge, M. S., H. Pessoa dos Santos, and M. A. S. Tine. 2000. Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiology and Biochemistry 38(1–2):141-156. Bueno, M. S., A. Alonso, and N. Villalobos. 1994. Nitrate reduction in cotyledons of Cicer arietinum L.: regulatory role of cytokinins. Plant Science 95(2):117-124. Chapin, F. S., L. Moilanen, and K. Kielland. 1993. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361(6408):150-153. Chen, J. T. and W. C. Chang. 2006. Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biologia Plantarum 50(2):169-173 Chen, W. H., T. M. Chen, Y. M. Fu, R. M. Hsieh, and W. S. Chen. 1998. Studies on somaclonal variation in Phalaenopsis. Plant Cell Reports 18(1-2):7-13. Christenson, E. A. 2001. Phalaenopsis: a monograph. Portland, Oregon, USA. Chugh, S.,S. Guha, and I. U. Rao. 2009. Micropropagation of orchids: A review on the potential of different explants. Scientia Horticulturae 122(4):507-520. DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry 28(3):350-356. Endres, L., B. Souza, and H. Mercier. 2002. In vitro nitrogen nutrition and hormonal pattern in bromeliads. In Vitro Cellular & Developmental Biology-Plant 38(5):481-486. Epstein, E., 1972. Mineral nutrition of plants: principles and perspectives. Findenegg, G.R. 1987. A comparative study of ammonium toxicity at different constant pH of the nutrient solution. Plant Soil 103:239-243. Foyer, C., S. Ferrario-Mery, and S. Huber. 2000. Regulation of Carbon Fluxes in the Cytosol: Coordination of Sucrose Synthesis, Nitrate Reduction and Organic Acid and Amino Acid Biosynthesis, p.177-203. In: R. Leegood, T. Sharkey and S. Caemmerer(eds.). Photosynthesis. Springer Netherlands. Franz, G. and H. Meier. 1971. Bildung und Abbau des Schelimpolysaccharids (Salepmannan) von Orchideenknollen. Planta Med 19(2):326-332. Frink, C. R., P. E. Waggoner, and J. H. Ausubel. 1999. Nitrogen fertilizer: retrospect and prospect. Proceedings of the National Academy of Sciences of the United States of America 96(4):1175-1180. Gan, S. and R. M. Amasino. 1995. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270(5244):1986-1988. GaudinovA, A. 1990. The effect of cytokinins on nitrate reductase activity. Biologia Plantarum 32(2):89-96. Gazzarrini, S., L. Lejay, A. Gojon, O. Ninnemann, W. B. Frommer, and N. von Wiren. 1999. Three Functional Transporters for Constitutive, Diurnally Regulated, and Starvation-Induced Uptake of Ammonium into Arabidopsis Roots. The Plant Cell Online 11(5):937-947. Gniazdowska, A. A. Krawczak, M. Mikulska, and A. M. Rychter. 1999. Low phosphate nutrition alters bean plants' ability to assimilate and translocate nitrate. Journal of Plant Nutrition 22(3):551-563. Hadley, G. and S. H. Ong. 1978. Nutritional requirements of orchid endophytes. New Phytologist 81(3):561-569. Harrison, C. R. and J. Arditti. 1978. Physiological Changes During the Germination of Cattleya aurantiaca (Orchidaceae). Botanical Gazette 139(2):180-189. Haynes, R. J. and K. M. Goh. 1978. Ammonium and nitrate nutrition of plants. Biological Reviews 53(4):465-510. Hew, C. J. and J. W. H. Yong. 1996. Photosynthesis, p.38-92. The physiology of tropical orchids in relation to the industry. World Scientific Publishing. Hopkins, W. G. and N. P. A. Huner. 2003. Nitrogen assimilation, p. 167-185. In: W.G. Hopkins and N.P.A. Huner (eds.). Introduction to plant physiology. Wiley. London, U.K. Hughes, K. W. 1981. Ornamental species, p. 5-50. In: B. V. Conger(ed.). Cloning agricultural plants via in vitro thechniques. CRC Press. Inc., Florida. Ichihashi, S. 1992. Micropropagation of Phalaenopsis through the culture of lateral buds from young flower stalks. Lindleyana 7:208-215. Iraqi, D. and F. M. Tremblay. 2001. Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. Journal of Experimental Botany 52(365):2301-2311. Khaw, P. S. and Chew, P. S. 1980. Preliminary studies on the growth and nutrient requirements of orchids, p.49-64. Proc. 3rd ASEAN Orchid Congress, Klambt, D. 1977. Cytokinin and Cell Metabolism, p.154-160. In: P. E. Pilet(eds.). Plant Growth Regulation. Springer Berlin Heidelberg. Kuo, H. L., J. T. Chen and W. C. Chang. 2005. Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis 'Little Steve'. In Vitro Cellular & Developmental Biology - Plant. 41(4):453-456 Letham D. S. 1994. Cytokinins as phytohormones—sites of biosynthesis, translocation, and function of translocated cytokinin, p. 57–80. In: D. W. S. Mok and M. C. Mok(eds.). Cytokinins: Chemistry, Activity, and Function. CRC Press. Boca Raton. Lu, J. L., J. R. Ertl, and C. Chen. 1992. Transcriptional Regulation of Nitrate Reductase mRNA Levels by Cytokinin-Abscisic Acid Interactions in Etiolated Barley Leaves. Plant Physiology 98(4):1255-1260. Lu, Y. X., C. J. Li, and F. S. Zhang. 2005. Transpiration, Potassium Uptake and Flow in Tobacco as Affected by Nitrogen Forms and Nutrient Levels. Annals of Botany. 95(6):991-998. Majerowicz, N., G. B. Kerbauy, C. C. Nievola, and R. M. Suzuki. 2000. Growth and nitrogen metabolism of Catasetum fimbriatum (orchidaceae) grown with different nitrogen sources. Environmental and Experimental Botany 44(3):195-206. Marschner H. 1995. Mineral nutrition of higher plants, 2nd edn. London:Academic Press. Masuda, H., T. Takahashi, and S. Sugawara. 1988. Acid and alkaline invertases in suspension cultures of sugar beet cells. Plant Physiol 86(1):312-317. Murashige, T. and F. Skoog. 1962. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum 15(3):473-497. Ninnemann, O., J. C. Jauniaux, and W. B. Frommer. 1994. Identification of a high affinity NH4+ transporter from plants. The EMBO journal 13(15):3464-3471. Orsel, M. and A. J. Miller. 2010. Transport Systems for NO3− and NH4+. p.83-102. Annual Plant Reviews Volume 42. Wiley-Blackwell. Osaki, M., T. Shinano, M. Matsumoto, T. Zheng, and T. Tadano. 1997. A root-shoot interaction hypothesis for high productivity of field crops, p.669-674. In: T. Ando, K. Fujita, T. Mae, H. Matsumoto, S. Mori and J. Sekiya(eds.). Plant Nutrition for Sustainable Food Production and Environment. Springer Netherlands. Park, S. Y., H. N. Murthy, and K. Y. Paek. 2003. Protocorm-like body induction and subsequent plant regeneration from root tip cultures of Doritaenopsis. Plant Science 164(6):919-923. Poole, H. A. and T. J. Sheehan. 1974 Chemical composition of plant parts of Phalaenopsis orchid. American Orchid Society Bulletin 43(3):242-247 Poole, H. A. and T. J. Sheehan. 1982. Mineral nutrition of orchid roots, p.195-212. In: J. Arditti(ed.). Orchid biology: Reviews and Perspectives, Vol II. Cornel University Press. Ithaca. New York. Robinson, S. A., G. R. Stewart, and R. Phillips. 1992. Regulation of glutamate dehydrogenase activity in relation to carbon limitation and protein catabolism in carrot cell suspension cultures. Plant Physiol 98(3):1190-1195. Rufty, T. W.,C. T. MacKown, and D. W. Israel. 1990. Phosphorus Stress Effects on Assimilation of Nitrate. Plant Physiology 94(1):328-333. Rufty, T. W.,D. W. Israel, R. J. Volk, J. Qiu, and T. Sa. 1993. Phosphate Regulation of Nitrate Assimilation in Soybean. Journal of Experimental Botany 44(5):879-891. Sakakibara, H., M. Suzuki, K. Takei, A. Deji, M. Taniguchi, and T. Sugiyama. 1998. A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. The Plant Journal 14(3):337-344. Samuelson, M. E. and C.-M. Larsson. 1993. Nitrate regulation of zeation riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium. Plant Science 93(1–2):77-84. SchjoRring, J. K. 1986. Nitrate and ammonium absorption by plants growing at a sufficient or insufficient level of phosphorus in nutrient solutions. Plant Soil 91:313-318 Schmidt, S. and G. R. Stewart. 1999. Glycine metabolism by plant roots and its occurrence in Australian plant communities. Functional Plant Biology 26(3):253-264. Schnier, H. F., M. Dingkuhn, S. K. Datta, E. P. Marqueses, and J. E. Faronilo. 1990a. Nitrogen-15 balance in transplanted and direct-seeded flooded rice as affected by different methods of urea application. Biology and Fertility of Soils 10(2):89-96. Schnier, H. F.,M. Dingkuhn,S. K. De Datta,K. Mengel,E. Wijangco, and C. Javellana. 1990b. Nitrogen Economy and Canopy Carbon Dioxide Assimilation of Tropical Lowland Rice. Agron. J. 82(3):451-459. Shinano, T., M. Osaki, S. Yamada, and T. Tadano. 1994. Comparison of root growth and nitrogen absorbing ability between Gramineae and Leguminosae during the vegetative stage. Soil Science and Plant Nutrition 40(3):485-495. Stancato, G. C., P. Mazzafera, and M. S. Buckeridge. 2001. Effect of a drought period on the mobilisation of non-structural carbohydrates, photosynthetic efficiency and water status in an epiphytic orchid. Plant Physiology and Biochemistry 39(11):1009-1016. Sturm, A. and G. Q. Tang. 1999. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends in Plant Science 4(10):401-407. Susilo, H. and Y. C. Alex Chang. 2014. Nitrogen Source for Inflorescence Development in Phalaenopsis: II. Effect of Reduced Fertilizer Level on Stored Nitrogen Use. Journal of the American Society for Horticultural Science 139(1):76-82. Susilo, H., Y. C. Peng, and Y. C. Alex Chang. 2014. Nitrogen Source for Inflorescence Development in Phalaenopsis: I. Relative Significance of Stored and Newly Absorbed Nitrogen. Journal of the American Society for Horticultural Science 139(1):69-75. Susilo, H., Y. C. Peng, S. C. Lee, Y. C. Chen, and Y. C. Alex Chang. 2013. The Uptake and Partitioning of Nitrogen in Phalaenopsis Sogo Yukidian 'V3' as Shown by 15N as a Tracer. Journal of the American Society for Horticultural Science 138(3):229-237. Takahashi, C. A., and H. Mercier. 2011. Nitrogen metabolism in leaves of a tank epiphytic bromeliad: Characterization of a spatial and functional division. J. of Plant Physiol. 168(11): 1208-1216. Takahashi, C. A., G. C. T. Ceccantini, and H. Mercier. 2007. Differential capacity of nitrogen assimilation between apical and basal leaf portions of a tank epiphytic bromeliad. Braz. J. of Plant Physiol. 19: 119-126. Takei, K., H. Sakakibara, M. Taniguchi, and T. Sugiyama. 2001. Nitrogen-Dependent Accumulation of Cytokinins in Root and theTranslocation to Leaf: Implication of Cytokinin Species that Induces GeneExpression of Maize ResponseRegulator. Plant and Cell Physiology 42(1):85-93. Takei, K., T. Takahashi, T. Sugiyama, T. Yamaya, and H. Sakakibara. 2002. Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. Journal of Experimental Botany 53(370):971-977. Tamaki, V. and H. Mercier. 2001. Effects of different ammoniacal nitrogen sources on N-metabolism of the atmospheric bromeliad Tillandsia pohliana Mez. Brazilian Journal of Botany 24:407-413. Tanaka, M. and Y. Sakanishi. 1978. Factors affecting the growth of in vitro cultured lateral buds from Phalaenopsis flower stalks. Scientia Horticulturae 8(2):169-178. Thorpe, T. A. 1978. Physiological and biochemical aspects of organogenesis in vitro, In: T. A. Thorpe(ed.). Plant tissue and cell culture. Proc. 4th Int. Conger. Tokuhara, K. and M. Mii. 1993. Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Reports 13(1):7-11 Tokuhara, K. and M. Mii. 2001. Induction of embryogenic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (Orchidaceae). In Vitro Cellular & Developmental Biology - Plant 37(4):457-461. Trepanier, M., M.-P. Lamy, and B. Dansereau. 2009. Phalaenopsis can absorb urea directly through their roots. Plant and Soil 319(1):95-100. Van den Ende, W. and A. Van Laere. 1995. Purification and properties of a neutral invertase from the roots of Cichorium intybus. Physiologia Plantarum 93(2):241-248. Van Hove, L. W. A., A. J. Koops, E. H. Adema, W. J. Vredenberg, and G. A. Pieters. 1987. Analysis of the uptake of atmospheric ammonia by leaves of Phaseolus vulgaris L. Atmospheric Environment 21(8):1759-1763. Venkataramana, S., K. M. Naidu, and S. Singh. 1991. Invertases and growth factors dependent sucrose accumulation in sugarcane. Plant Science 74(1):65-72. Wang, Y. T. 2007. Potassium Nutrition Affects Phalaenopsis Growth and Flowering. HortScience 42(7):1563-1567. Wang, Y. T. 2008. High NO3-N to NH4-N Ratios Promote Growth and Flowering of a Hybrid Phalaenopsis Grown in Two Root Substrates. HortScience 43(2):350-353. Wang, Y. T. and A. C. J. Tsai. 2006. Effect of Potassium Concentration on a Hybrid Phalaenopsis Grown in a Bark Mix or Sphagnum Moss. HortScience 41(4):980. Wang, Y. T. and E. A. Konow. 2002. Fertilizer Source and Medium Composition Affect Vegetative Growth and Mineral Nutrition of a Hybrid Moth Orchid. Journal of the American Society for Horticultural Science 127(3):442-447. Winner, C. L. 1959. Orchid physiology, p. 315-349. In: C. L. Winner(ed.). The orchids, a scientific survey. The Ronald Press. New York. Wright, D. E. 1962. Amino acid uptake by plant roots. Archives of Biochemistry and Biophysics 97(1):174-180. Xu, G., X. Fan and A. J. Miller. 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63(1):153-182. Yates, R. C. and J. T. Curtis. 1949. The effect of sucrose and other factors on the shoot-root ration of orchid seedlings. American Journal of Botany 36(5):390-396. Yin, Z.-H., W. Kaiser, U. Heber, and J. Raven. 1996. Acquisition and assimilation of gaseous ammonia as revealed by intracellular pH changes in leaves of higher plants. Planta 200(4):380-387. Zha, X. Q., J. P. Luo, S. T. Jiang, and Y. Wang. 2007. Carbon and nitrogen metabolism during Dendrobium huoshanense protocorm-like body development in suspension culture. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 141(1):62-68.
摘要: Nutrition requirement is different at various development stages in Phalaenoepsis spp.. In vitro plantlet growth is more sensitive to nutrition level and pH. To know remained nutrient of medium and plant nutrition content could contribute nutrition requirements and to adjust medium components for in vitro culture. This study aimed was to evaluate the dynamic of nutrition contents in Phalaenopsis Sogo Yukidan 'V3' and nitrogen (N) requirements during the micro propagation multiplication stage. Investigate vegetative growth characteristic and measure plants and remained medium concentration of N, phosphorus (P), potassium (K), total soluble sugar (TSS) and starch every three weeks. N requirement become more and more when plant grow. In the multiplication stage, N requirement of plantlet per flask was about 14.86 mg, in the rooting1 stage was about 19.63 mg and in the rooting2 stage about 59.97 mg. Therefore, plants N content in rooting2 in higher than other stage. In the multiplication and rooting1 stage, P absorbability per explant was about 0.045-0.085 mg and in the rooting2 stage was 0.079 mg. Plants P content in the multiplication and rooting1 stage also higher than rooting2 stage. K of plant requirement and plant content had similar result. In the multiplication and rooting1 stage, K was absorbed about 20.91、2.2 mg per plantlet and in the rooting2 stage is higher about 4.12 mg per plant. Treatment2 used different N source and concentrations in medium to know which nitrogen and level could let Phalaenopsis grow well in the multiplication stage. The result showed that Phalaenopsis preferred nitrate in the multiplication stage. Therefore, P and sucrose requirements were also higher than other N treatments. Phalaenopsis buds were no significant growth when N concentration higher 15 mM. After high temperature and pressure sterilization, urea may change to ammonium to affect K absorbability. Urea is not suitable to be the major N source in Phalaenopsis at multiplication stage.
蝴蝶蘭在各生長階段對養分的需求量各不相同,瓶內培養基營養濃度對植物體的影響較瓶外更為劇烈,因此調查培養基消耗量及植體營養含量可擬定適合之培養基配方,以促進植體生長,並節約生產成本,避免浪費及環境污染。在本試驗中,調查蝴蝶蘭Phalaenopsis Sogo Yukidan 'V3'瓶苗之營養狀態及營養生長特性,並分析其剩餘培養基中營養含量,藉以建立瓶內培養基適當的營養用量;氮的需求量會隨植株生長而增加,母瓶即增殖階段每瓶培養基氮的減少量約14.86 mg,發根階段為19.63 mg,快速生長期(子瓶)時則顯著增加為59.97 mg,因此子瓶時期植物體的氮含量也較高;磷的消耗量在母瓶及中母瓶每個培植體約為0.045-0.085 mg,子瓶則為0.079 mg,植體中磷的含量則顯示子瓶階段較低;植體中鉀離子的濃度因植株快速生長而逐漸下降,由最初4.97%降至2.84%,單一植體對鉀的吸收量各階段分別為0.91、2.2、4.12 mg。蔗糖的消耗量則以子瓶期較高,全可溶性醣的含量與栽培階段無明顯關聯。在不同氮源及氮濃度的試驗中,在培養基中添加不同的氮源與氮濃度,並分析植體及培養基中營養含量,以瞭解蝴蝶蘭增殖芽對氮源的偏好與需求量及氮對磷、鉀及碳水化合物間之交互作用,試驗結果顯示蝴蝶蘭營養芽增殖階段,偏好以硝酸態碳為氮源,其磷及蔗糖的吸收量也會隨之上升,培養基中不添加氮時,植株在兩個月內並無缺氮現象,當氮濃度高於15 mM後植株生長量便不會有顯著性上升,尿素經高溫高壓滅菌後,可能會轉變成銨態氮,並影響鉀離子的吸收,不適合做為蝴蝶蘭培養基之主要氮源。
URI: http://hdl.handle.net/11455/89219
其他識別: U0005-1407201415104600
文章公開時間: 2014-07-16
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.