Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89221
DC FieldValueLanguage
dc.contributorMenq-Jiau Tsengen_US
dc.contributor曾夢蛟zh_TW
dc.contributor.authorWei-Ting Linen_US
dc.contributor.author林葦庭zh_TW
dc.contributor.other園藝學系所zh_TW
dc.date2014zh_TW
dc.date.accessioned2015-12-07T06:29:26Z-
dc.identifierU0005-1006201514531900zh_TW
dc.identifier.citation史一博、孫建和。2012。微生物學报 52:141-145。 //朱宛茹、楊明德、曾夢蛟。2010。D 型胺基酸氧化酵素基因(daao)作為甘藍 之葉綠體基因轉殖的篩選標誌基因之研究。興大園藝 35: 43-63。 //農業統計年報。2012。行政院農業農委會。 //廖珮君、楊明德、許文輝、曾夢蛟。2011。丙胺酸消旋酵素基因(alaR)作為 甘藍之葉綠體基因轉殖的篩選標誌基因之研究。興大園藝 36: 33-50。 //劉樂承。白遠國。2006。蕓苔屬植物器官離體再生影響因素研究進展。長江 大學學報 3:175-178。 //蕭政弘。2012。甘藍抗病育種—黑腐病與黃葉病。台中區農業改良場。 pp.313-316。 //Ahmad, N., and Z. Mukhtar. 2013. Green factories: plastids for the production of foreign proteins at high levels. Gene Ther. Mol. Biol. 15: 14-29. //Apel, W., and R. Bock. 2009. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin a conversion. Plant Physiol. 151: 59-66. //Block, M. D., J. Schell, and M. V. Montagu. 1985. Chloroplast transformation by Agrobacterium tumefaciens. EMBO J. 4: 1367-1372. //Boscariol, R. L., M. Monteiro, E. K. Takahashi, S. M. Cabregas, M. L. C. Vieira, L. G. E. Vieira, L. F. P. Pereira, F. A. A. Mourão Filho, S. C.Cardoso, R. S. C. Christiano, A. Bergamin Filho, J. M. Barbosa, F. A. Azevedo, and B. M. J. Mendes. 2006. Attacin A gene from Tricloplucia in reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis 'Hamlin'. J. Amer. Soc. Hort. Sci. 131: 530-536. //Boynton, J. E., N. W. Gillham, E. H. Harris, J. P. Hosler, A. M. Johnson, A. R. Jones, B. L. Randolph-Anderson, D. Robertson, T. M. Klein, and K. B. Shark. 1988. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534-1538. //Cardoso, S. C., J. M. Barbosa-Mendes, R. L. Boscariol-Camargo, R. S. Carlos Christiano, A. B. Filho, M. L. Carneiro Vieira, B. M. Januzzi Mendes, and F. A. Alves Mourão Filh. 2010. Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin a gene for resistance to Xanthomonas citri subsp. Citri. Plant Mol. Biol. Rep. 28: 185-192. //Chhikara, S., D. Chaudhury, O. P. Dhankher, and P. K. Jaiwal. 2012. Combined expression of a barley class II chitinase and type Iribosome inactivating protein in transgenic Brassica juncea. provides protection against Alternaria brassicae. Plant Cell Tiss. Organ. Cult. 108:83–89. //DellaPenna, D. 2005. A decade of progress in understanding vitamin E synthesis in plants. Plant Physiol. 162: 729-737. //Dufourmantel, N., B. Pelissier, F. Garcon, G. Peltier, J. M. Ferullo, and G. Tissot. 2004. Generation of fertile transplastomic soybean. Plant Mol. Biol. 55: 479-489. //During, K., 1993. Can lysozymes mediate antibacterial resistance in plants? Plant Mol. Biol. 23: 209-214. //Erikson, O., M. Hertzberg, and T. Nasholm. 2004. A conditional marker gene allowing both positive and negative selection in plants. Nat. Biotechnol. 22: 455-458. //He, Y., S. Chen, A. Peng, X. Zou, L. Xu, T. Lei, X. Liu, and L. Yao. 2011. Production and evaluation of transgenic sweet orange (Citrus sinensis Osbeck) containing bivalent antibacterial peptide genes (Shiva A and Cecropin B) via a ovel Agrobacterium-mediated transformation of mature axillary buds. Scientia Hort. 128:99-107. //Hou, B. H., Y. H. Zhou, L. H. Wan, Z. L. Zhang, G. F. Shen, Z. H. Chen, and Z. M. Hu. 2003. Chloroplast transformation in oilseed rape. Transgenic Res. 12: 111-114. //Jan, P. S., H. Y. Huang, and H. M. Chen. 2010. Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases. Am. Soc. Microbiol. 76: 769-775. //Jin, S., A. Kanagaraj, D. Verma, T. Lange, and H. Daniell. 2011. Release of hormones from conjugates: chloroplast expression of β-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters. Plant Physiol. 155: 222-235. //Kanagaraj, A. P., D. Verma, and H. Daniell. 2011. Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts. Plant Mol. Biol. 76:323-333. //Kanamoto, H., A. Yamashita, H. Asao, S. Okumura, H. Takase, M. Hattori, A. Yokota, and K. L. Tomizawa. 2006. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res. 15: 205-217. //Kang, T. J., N. H. Loc, M. O. Jang, Y. S. Jang, Y. S. Kim, J. E. Seo, and M. S. Yang. 2003. Expression of the B subunit of E. coli heat-labile enterotoxin in the chloroplasts of plants and its characterization. Transgenic Res. 12: 683-691. //Kato, A., S. Nakamura, H. Ibrahim, T. Matsumi, C. Tsumiyama, and M. Kato. 1998. Production of genetically modified lysozymes having extreme heat stability and antimicrobial activity against Gram negative bacteria in yeast and in plants. Mol.Nutr. Food Res. 42, 128–130. //Khan, M. S., and F. Nurjis. 2012. Synthesis and expression of recombinant interferon alpha-5 gene in tobacco chloroplasts, a non-edible plant. Mol. Biol. Rep. 39: 4391-4400. //Khan, M. S., and P. Maliga. 1999. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat. Biotechnol. 17: 910-915. //Kumar, D., A. Y. Mohd,. P. Singh, M. Sardar, N. B. Sarin. 2013. Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250:1079–1089. //Kumar, S., A. Dhingra, and H. Daniell. 2004. Manipulation of gene expression facilitates cotton plastid transformationof cotton by somatic embryogenesis and maternal inheritance of transgenes. Plant Physiol. 56: 203-216. //Lee, S. B., B. Li, S. Jin, and H. Daniell. 2011. Expression and characterization of antimicrobial peptides Retrocyclin‐101 and Protegrin‐1 in chloroplasts to control viral and bacterial infections. Plant Biotech. 9: 100-115. //Lelivelt, C. L., M. S. McCabe, C. A. Newell, C. B. Desnoo, K. M. van Dun, I. Birch-Machin, J. C. Gray, K. H. Mills, and J. M. Nugent. 2005. Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol. Biol. 58: 763-774.//Lin, Q.,T. Wu, H.Dong,L. Wu, J. Cao, and L. Huang. 2012. High-Level Expression of Sporamin in Transgenic Chinese Cabbage Enhances Resistance Against Diamondback Moth. Plant Mol. Biol. Rpt 31: 657-664. //Liu, C. W., C. C. Lin, J. C. Yiu, J. W. Chen, and M. J. Tseng. 2008.Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor. Appl. Genet. 117:75–88. //McBride, K. E., Z. Svab, D. J. Schaaf, P. S. Hogan, D. M. Stalker, P. Maliga, and N. B. Sarin. 1995. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Nat. Biotechnol. 13: 362-365. //Mohd, A. Y., and N. B. Sarin. 2007. Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res 16:109–113. //Mohd, A. Y., D. Kumar, R. Rajwanshi, R. J. Strasser, M. Tsimilli-Michael, Govindjee, and N. B. Sarin. 2010. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta. 1797: 1428-1438. //Mohd, A. Y., D. Kumar, R. Rajwanshi, R. J. Strasser, M. Tsimilli-Michael, and N. B. Sarin. 2010. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta. 1797: 1428–1438. //Nakajima, H., T. Muranaka, F. Ishige, K. Akutsu and K. Oeda. 1997. Fungal and bacterialdisease resistance in transgenic plants expressing human lysozyme. Plant Cell. Rep. 16: 674–679. //Ohyama, K., H. Fukuzawa, T. Kohchi, H. Shirai, T. Sano, S. Sano, K. Umesono, Y. Shiki, M. Takeuchi, Z. Chang, S. Aota, H. Inokuchi, and H. Ozeki, 1986. Chloroplast gene organization deduced from complete sequence of Liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572-574. //Park, T., D. K. Struck, J. F. Deaton, and R. Young. 2006. Topological dynamics of holins in programmed bacterial lysis. Proc. Natl Academy Sci. 103: 19713-19718. //Rivero, M., N. Furman , N. Mencacci , P. Picca, L. Touma, Q. Lentz, B.A. Fernando, and A. Mentaberry. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. 2012. J. Biotechnol. 157: 334– 343. //Ruf, S., M. Hermann, I. J. Berger, H. Carrer, and R. Bock. 2001. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat. Biotechnol. 19:870-875. //Serrano, C., P. Arce-Johnson, H. Torres, M. Gebauer, M. Gutiérrez, M. Moreno, X. Jordana, A. Venegas, J. Kalazich, and L. Holuigue. 2000. Expression of the chicken lysozyme gene in potato enhances resistance to infection by Erwinia carotovora subsp. atroseptica. Am. J. Potato Res. 77, 191–194. //Shinozaki, K., M. Ohme, M. Tanaka, T. Wakasugi, N. Hayashida, T. Matsubayashi, N. Zaita, J. Chunwongse, J. Obokata, K. Yamaguchi-Shinozaki, C. Ohto, K. Torazawa, B. Y. Meng, M. Sugita, H. Deno, T. Kamogashira, K. Yamada, J. Kusuda, F. Takaiwa, A. Kato, N. Tohdoh, H. Shimada, and M. Sugiura. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5: 2043-2049. //Sidorov, V. A., D. Kasten, S. Z. Pang, P. T. Hajdukiewicz, J. M. Staub, and N. S. Nehra. 1999. Technical Advance: Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J. 19: 209-216. //Sikdar, S. R., G. Serino, S. Chaudhuri, and P. Maliga. 1998. Plastid transformation in Arabidopsis thaliana. Plant Cell Rep. 18: 20-24. //Sporlein, B., M. Streubel, G. Dahlfeld, P. Westhoff, and H. U. Koop. 1991. PEG-mediated plastid transformation: a new system for transient gene expression assays in chloroplasts. Theor. Appl. Genet. 82: 717-722. //Svab, Z., and P. Maliga. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. P. Natl. Acad. Sci. USA. 90: 913-917. //Tseng, M. J., C. W. Liu, and J. C. Yiu. 2007. Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol. Biochem 45:822-833. //Tseng, M. J., C. W. Liu, and J. C. Yiu. 2008. Tolerance to sulfur dioxide in transgenic Chinese cabbage transformed with both the superoxide dismutase containing manganese and catalase genes of Escherichia coli. Scientia Horti. 115 :101–110. //Vanjildorj, E., S. Y. Song, Z. H. Yang, J. E. Choi, Y. S. Noh, S. Park, W. J. Lim, K. M. Cho, H. D. Yun, and Y. P. Lim. 2009. Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Plant Cell Rep 28:1581–1591. //Yokotani, N., M. Higuchi, Y. Kondou, T. Ichikawa, M. Iwabuchi, H. Hirochika, M. Matsui, and K. Oda. 2011. A novel chloroplast protein, CEST induces tolerance to multiple environmental stresses and reduces photooxidative damage in transgenic Arabidopsis. J. Exp. Bot. 62: 557-569. //Zhang, J., F. Liu, L. Yao, C. Luo., Y. Yin, G. Wang, and Y. Huang. 2012. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene. Breeding Sci 62: 105–112. //Zou, Z., C. Eibl, and K. HU. 2003 The stem-loop region of the tobacco psbA 5'UTR is an important determinant of mRNA stability and translation efficiency. Mol. Genet. Genomics 269: 340-349.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/89221-
dc.description.abstractCabbage (Brassica oleracea L. var. capitata) plays an important role in livelihood of the people and the economic status in Taiwain. In summer, the high temperature and humidity cause very serious problem and plant diseases in combination with pests and insects. Development of cabbage varieties with more disease-resistant is considered to be of great economic importance in Taiwan. Biological control of plant diseases and plant pathogens represents an attractive alternative as well as is of great significance for the future. A two-component cell lysis cassette composed of holin and lysozyme genes have been isolated and characterized from phytopathogenic bacteria Xanthomonas from Dr. Ming-Te Yang's laboratory. By using the system of daao gene as marker genes and followed by elimination of marker gene, we attempt to engineering the phage lysozyme (lys) and holin (hol) genes into the cabbage chloroplasts. The objective of this study is to engineer transplastomic cabbage with a high level of resistance against plant disease using the approach of the marker gene-free technology. In this study, four chloroplast transformation vectors (pMT91-GHD, pMT91-GHsD, pMT91F-GL-sD, pMT91F-EL-sD) harboring the daao as selectable marker genes and lys or hol as target genes were transferred into cabbage chloroplast via biolistic bombardment. The regenerated plants were primarily selected by 100-200 ppm D-alanine and further confirmed by PCR and RT-PCR. The results of PCR and RT-PCR analysis indicated that transformed genes (hol, lys, gus, and egfp) were integrated into the plastid genome of transplastomic plants, and its mRNA was expressed. The selectable marker gene daao had been eliminated in several transgenic plants. Preliminary results showed that disease resistance existed in the lys or hol gene transplastomic plants after inoculation with Xanthomonas campestris pv. campestris 11 (Xc 11).en_US
dc.description.abstract甘藍為台灣重要蔬菜之一,於 2013 年農業統計年報導栽培面積約七千 多公頃,是種植面積最廣的葉菜類蔬菜,有其重要的民生及經濟地位,因此 改善其品質及增加生產,一直是蔬菜專家努力的目標。台灣夏季高溫多雨, 造成病蟲害的快速蔓延,使得農民噴施農藥的次數及劑量增加,造成農藥殘 留量上升,病蟲產生抗藥性,甚至破壞生態平衡的情形。確保全球糧食的不 虞匱乏及促進人類的健康,要如何使健康糧食作物增產,是目前農業科學家 重要課題之一。溶菌酶 (lysozyme, lys)使細菌的細胞壁中肽聚糖網狀結構崩 壞,進而破壞細菌的細胞壁,使細胞膜因內部透壓過大而破滅死亡。穿孔素 (holin, hol)形成的孔道可使溶菌酶通過到達細胞壁肽聚醣層發揮裂菌功能。 本研究乃結合所建立的 daao 基因作為葉綠體篩選標誌基因系統,及剔除篩 選標誌基因之無篩選標誌基因的葉綠體基因轉殖系統,分別將穿孔素基因 (hol)及溶菌酶基因 (lys)轉殖到'初秋'甘藍葉綠體基因組中,探討利用基因工 程育成抗病甘藍的可行性。 本研究將分離自 Xanthomonas fragariae (草莓角斑病菌)菌株的類似噬菌 體 (phage XF)的溶菌酶 (lys)及穿孔素 (hol)基因,並構築到甘藍葉綠體基因 轉殖之四種載體 (pMT91-GHD、pMT91-GHsD、pMT91F-GL-sD、pMT91F- ELsD),利用基因槍轟擊法轉殖到'初秋'甘藍下胚軸的葉綠體。再生殖株利用 100~200 ppm 之 D-alanine 持續篩選,已獲得四種轉殖系的再生植株 (GHD、 GH-sD、GL-sD 及 EL-sD)。再生植株以 PCR、RT-PCR 分析,結果顯示 hol 與 lys 目標基因、gus 與 egfp 報導基因已存在甘藍葉綠體基因組中並表現其 mRNA;部份轉殖植株之 daao 篩選基因已經被惕除。接種十字花科黑腐病 菌後,部份轉殖植株呈現明顯的具抗病特性。本研究初步結果顯示,利用葉 綠體基因轉殖系統,轉殖溶菌酶基因 (lys)及穿孔素基因 (hol),培育出抗病 甘藍是可行的。zh_TW
dc.description.tableofcontents中文摘要………i 英文摘要………ii 目次………iii 圖目次………v 前言………1 前人研究………3 一、葉綠體基因轉殖………3 二、葉綠體應用現況………5 (一)、改善作物性狀………5 (二)、生產醫用蛋白及疫苗………6 三 植物抗細菌蛋白基因轉殖之應用………6、 (一)、天蠶素 Cecropin………7 (二) 攻擊素 Attacin………8、 四、 蕓苔屬蔬菜作物基因轉殖應用………8 (一)、抗非生物逆境之研究………9 1、 非酵素型防禦系統應用………9 2、 酵素型防禦系統應用………9 (二) 、抗生物性病害逆境之研究………10 1、 破壞病原菌細胞結構………10 2、 抗病相關基因………11 (三) 、抗生物性蟲害逆境之研究………11 1.蘇力菌毒蛋白之應用………12 2.蛋白酶抑制劑應用………12 五、 溶菌酶簡介及應用………12 (一) 、溶菌酶分類………12 (二) 、溶菌酶主要作用機制………13 (三) 、溶菌酶酵素共價鍵作用位置………13 (四) 、溶菌酶酵素基因轉殖到植物之研究………13 六、 穿孔素………14 材料與方法………16 結果………25 一、 轉殖載體分析………25 二、 甘藍培殖體 D-alanine 篩選濃度試驗………26 三、 甘藍葉綠體基因轉殖、培殖體篩選及誘導再生………26 四、 轉殖甘藍植株基因表現、GUS 活性分析、病原菌接種測試……27 討論………50 參考文獻………54zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-07-16起公開。zh_TW
dc.subjectzh_TW
dc.subjectNOen_US
dc.title轉殖溶菌酶(Lysozyme)及穿孔素(Holin)基因至甘藍(Brassica oleracea L. var. capitata L.)葉綠體之研究zh_TW
dc.titleStudies on Transformation of Lysozyme and Holin Genes into Cabbage (Brassica oleracea L. var. capitata L.)Chloroplastsen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-07-16zh_TW
dc.date.openaccess2018-07-16-
Appears in Collections:園藝學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.