Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89224
標題: 遮陰、有機質肥料及鉬噴施對油菜生長及硝酸根離子含量之影響
Effect of shading, organic fertilizers and foliar spray with molybdenum on the growth and nitrate content in rape (Brassica napus L.)
作者: Ying-Chieh Huang
黃盈潔
關鍵字: 油菜
遮陰
有機質肥料

硝酸根離子
氮代謝
Rape
shade
organic fertilizer
Mo
nitrate ion
nitrogen metabolism
引用: 三好洋。1978。土壤診斷法。農山漁村文化協會。東京。 于紅梅、王志剛、葛建軍、高婷、孔祥忠。2014。適量施肥提高土壤殘留硝態氮利用率及菠菜產量。農業工程學報 30(16): 121-128。 中華肥料協會。2005。作物施肥手冊。行政院農業委員會農糧署。154pp.。 中華土壤肥料學會。1995。土壤分析手冊。台灣省政府農林廳。489pp.。 李銀水、魯劍巍、鄒娟、黃和平、余勇。2008。湖北省油菜氮肥效應及推薦用量研究。中國油料作物學報 30(2): 218-223。 李郁淳。2006。氯化銨處理對尖葉萵苣及小白菜生育及硝酸鹽含量之影響。國立中興大學園藝研究所碩士論文。101pp.。 林毓雯、王鍾和。2002。不同有機資材之分解與氮素礦化。作物有機栽培。行政院農業委員會農業試驗所農業化學組。pp. 105-115。 柯勇。2004。植物生理學。藝軒圖書出版社。762pp.。 姜金龍、邱發祥。2005。台灣農家要覽-農作篇(一)。行政院農業委員會。農業委員會台灣農家要覽增修訂三版策劃委員會。台北市。pp. 153-158。 倪禮豐。2004。有機質肥料之分類及品質判斷。花蓮區農業專訊 50: 2-5。 張庚鵬、張愛華。1997。蔬菜作物營養障礙診斷圖鑑。臺灣省農業試驗所。109pp.。 張簡秀容、馮永富。1995。有機肥料對不同葉菜類硝酸鹽含量之影響。桃園區農業改良場研究彙報 21: 7 -19。 黃敬凱。2013。有機質肥料及遮蔭對蕹菜及葉萵苣生長及硝酸鹽含量之影響。國立中興大學園藝研究所碩士論文。135pp.。 陳仁炫。 2005 。有機質肥料品質及施肥技術。台南區農業改良場技術專刊。行政院農委會台南區農業改良場。pp. 75-93。 陳存澤、王斐能、鍾仁賜、張義宏。2012。不同的有機質肥料連用七年對土壤化學性質、酵素活性及微生物族群結構的影響。台灣農業化學與食品科學 50(4): 179-188。 陳葦玲、周書緯、李品瑩、邱瑜君、張雅文。2010。氮肥及鉬離子對油菜及青梗白菜硝酸鹽累積量之影響。臺中區農業改良場研究彙報 106: 11-22。 郭忠吉、陳惠美、陳秀珠。1990。精緻蔬菜生產與光之管理。精緻蔬菜產銷改進研討會專集。pp. 81-89。亞洲蔬菜研究發展中心。 郭孚燿。1998。遮陰及氮肥對芥藍菜硝酸鹽累積之影響。台中區農業改良場研究彙報 58: 59-66。 楊秋忠。2010。土壤與肥料。農事股份有限公司。543pp.。 鄔家琪、張喜寧。2001。硝酸離子含量對蔬菜品質的影響。科學農業 49(1): 1-6。 廖乾華、莊浚釗。2000。有機質肥料對結球白菜生育之影響。桃園區農業改良場研究彙報。42: 28-36。 蔡宜峰、莊作權、黃裕銘。1993。一般有機質在土壤中礦化潛能及礦化速率之估算。永續農業研討會專集。pp. 69-77。 戴振洋、郭俊毅。2007。油菜新品種'臺中3號'之育成。臺中區農業改良場研究彙報 95: 13-25。 劉敏莉。2012。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報 21(1): 1-15。 譚鎮中、李振州、王銀波。2001。硝化抑制劑對小白菜植體中硝酸態氮含量之影響。土壤與環境 4(1): 47-54。 鍾仁賜、翁弘明。1998。有機質肥料對蔬菜生長及氮成份與土壤肥力之影響。農業廢棄物在有機農業之應用研討會專刊。行政院農業委員會。pp. 136-164。 羅秋雄、李宗翰。2010。設施蔬菜有機栽培長期施用有機質肥料對土壤性質及蔬菜生育影響。桃園區農業改良場研究彙報 67: 17-32。 蕭巧玲、楊純明、何佳勳、蔡淑珍、林毓雯、劉滄棽。2013。氮肥及氣象環境對設施葉萵苣生長及硝酸鹽含量之影響。作物、環境與生物資訊 10: 284-289。 Adams, W. W., C. R. Zarter, V. Ebbert, and B. Demmig-Adams. 2004. Photoprotective strategies of overwintering evergreens. BioScience 54: 41-49. Amr, A. and N. Hadidi. 2001. Effect of cultivar and harvest date on nitrate (NO3¯) and nitrite (NO2¯) content of selected vegetables grown under open field and greenhouse conditions in Jordan. J. Food Compos. Anal. 14(1): 59-67. Anjana, S. U., I. Muhammad, and Y. P. Abrol. 2007. Are nitrate concentrations in leafy vegetables within safe limits? Curr. Sci. 92(3): 355-360. Aslam, M., R. L. Travis, and D. W. Rains. 2001. Diurnal fluctuations of nitrate uptake and in vivo nitrate reductase activity in Pima and Acala cotton. Crop Sci. 41(2): 372-378. Björkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 170: 489-504. Buchanan, B. B., W. Gruissem, and R. L. Jones. 2000. Nitrogen and sulfur. In: Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rock-ville, Md. 789pp. Burns, I. 2000. Development of a decision support system for nitrogen fertilizer application in glasshouse lettuce (LINK). Final report on project PC88a (LINK project LK 0438) to the Horticultural Development Council, East Malling, Kent. Campbell, W. H. 1999. Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Rev. Plant Biol. 50: 277-303. Cárdenas-Navarro, R., S. Adamowicz, and P. Robin. 1999. Nitrate accumulation in plants: a role for water. J. Exp. Bot. 50(334): 613-624. Chang, E. H., R. S. Chung, and Y. H.Tsai. 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 53(2): 132-140. Chen, B. M., Z. H. Wang, S. X. Li, G. X. Wang, H. X., Song, and X. N. Wang. 2004. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 167(3): 635-643. Constantinides, M. and J. H. Fownes. 1994. Nitrogen mineralization from leaves and litter of tropical plants: relationshipsto nitrogen, lignin, and soluble polyphenol concentrations. Soil Biol. Biochemistry 26(1): 49-55. Crawford, N. M. 1995. Nitrate: nutrient and signal for plant growth. Plant Cell 7: 859-868. Douglas, B. F. and F. R. Magdoff. 1991. An evaluation of nitrogen mineralization indices for organic residues. J. Environ. Qual. 20: 368-372. Demmig-Adams, B., W. W. Adams, D. H. Barker, B. A. Logan, D. R. Bowling, and A. S. Verhoeven. 1996. Using chlorophyⅡ fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Plant Physiol. 98: 253-264. Demmig-Adams, B. and W. W. Adams. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1: 21-26. Evanylo, G., C. Sherony, J.Spargo, D. Starner, M. Brosius, and K. Haering. 2008. Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agr. Ecosyst. Environ. 127(1): 50-58. Fageria, N. K. and A. Moreira. 2011. The role of mineral nutrition on root growth of crop plants. Adv. Agron. 110: 251-331. Fan, X. X., Z. G. Xu, X. Y. Liu, C. M. Tang, L. W. Wang, and X. l. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 153: 50-55. Fu, W., P. Li, Y. Wu, and J. Tang. 2012. Effects of different light intensities on anti-oxidative enzyme activity, quality and biomass in lettuce. Hort. Sci. 39(3): 129-134. Havaux, M., K. P. Bonfils, C. Lutz, and K. K. Niyogi. 2000. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophylls cycle enzyme violaxanthin de-epoxidase. Plant Physiol. 124: 273-284. Hmelak Gorenjak, A. and A. Cencič. 2013. Nitrate in vegetables and their impact on human health. A review. Acta Aliment. 42(2): 158-172. Hill, M. J. 1991. Nitrate and Nitrites in food and water. Ellis Horwood. p.163-187. Haynes, R. J. and R. Naidu. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosys 51(2): 123-137. Hristozkova, M., M. Geneva, and I. Stancheva. 2006. Response of pea plants (Pisum sativum L.) to reduced supply with molybdenum and copper. Int. J. Agri. Biol. 8(2): 218-220. Huang, J., S. H. Wang, L. Yan, and Q. S. Zhong. 2010. Plant photosynthesis and its influence on removal efficiencies in constructed wetlands. Ecol. Eng. 36(8): 1037-1043. Kaiser, B. N., K. L. Gridley, J. N. Brady,T. Phillips, and S. D. Tyerman. 2005. The role of molybdenum in agricultural plant production. Ann. Bot. 96: 745-754. Krall, J. P. and G. E. Edwards. 1990. Quantum yields of photosystemII electron transport and carbon dioxide fixation in C4 plants. Aust. J. Plant Physiol. 17: 579-588. Krause, G. H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Biol. 42(1): 313-349. Lam, H. M., K. T. Coschigano, I. C. Oliveira, R. Melo-Oliveira, and G. M. Coruzzi. 1996. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Biol. 47(1): 569-593. Lennox, S. D., R. H. Foy, R. V. Smith, and C. Jordan. 1997. Estimating the contribution from agriculture to the phosphorus load in surface water. In Phosphorus loss from soil to water. CAB Int., New York. pp. 55-75. Li, X. P., O. Björkman, C. Shih, A. R. Grossman, M. Rosenquist, S. Jansson, and K. K. Niyogi. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391-395. Lillo, C. 1994. Light regulation of nitrate reductase in green leaves of higher plants. Physiol. Plant. 90: 616-620. Liu, H., C. Hu, X. Sun, Q. Tan, Z. Nie, and X. Hu. 2010. Interactive effects of molybdenum and phosphorus fertilizers on photosynthetic characteristics of seedlings and grain yield of Brassica napus. Plant Soil 326(1-2): 345-353. Liu, K. W. and Q. C. Yang. 2012. Effects of short-term treatment with various light intensities and hydroponic solutions on nitrate concentration of lettuce. Acta. Agr. Scand. B-S P. 62(2): 109-113. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence-apractical guide. J. Exp. Bot. 51: 659-668. Mendel, R. R. and R. Haensch. 2002. Molybdoenzymes and molybdenum cofactor in plants. J. Exp. Bot. 53: 1689-1698. Nie, Z. J., C. X. Hu, X. C. Sun, Q. L. Tan, and H. E. Liu. 2007. Effects of molybdenum on ascorbate-glutathione cycle metabolism in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Soil 295: 13-21. Norman, R. J., J. T. Gilmour, and B. R. Wells. 1990. Mineralization of nitrogen from nitrogen-15 labeled crop residues and utilization by rice. Soil Sci. Soc. Am. J. 54(5): 1351-1356. Oaks, A. 1994. Primary nitrogen assimilation in higher plants and its regulation. Can. J. Bot. 72(6): 739-750. Ozer, H. 2003. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. Europ. J. Agronomy 19: 453-463. Pannala, A. S., A. R. Mani, J. P. E. Spencer, V. Skinner, K. R. Bruckdorfer, K. P. Moore, and C. A. Rice-Evans. 2003. The effect of dietary nitrate on salivary, placma, and urinary nitrate metadolism in humans. Free Rad. Biol. Med. 34: 576-584. Riens, B. and H. W. Heldt. 1992. Decrease of nitrate reductase activity in spinach leaves during a light-dark transition. Plant Physiol. 98: 573-577. Santamaria, P. 2006. Nitrate in vegetable: toxicity, content, intake and EC regulation. F. Sci. Food Agric. 86: 10-17. Steinger, T., B. A. Roy, and M. L. Stanton. 2003. Evolution in stressful environments II: adaptive value and costs of plasticity in response to low light in Sinapis arvensis. J. Evolution. Biol. 16(2): 313-323. Suphachai, A., M. Takagaki, and S. chaireag. 2006. Effect of amount of nitrogen fertilizer on early growth of leafy vegetables in Thailand. Jap. J. Trop. Agr. 50(3): 127-132. Shiraishi, N., T. Sato, N. Ogura, and H. Nakagawa. 1992. Control by glutamine of the synthesis of nitrate reductase in cultured spinach cells. Plant Cell Physiol. 33(6): 727-731. Taiz, L. and E. Zeiger. 2002. Plant Physiology. 3rd ed. Sinauer Associates, Inc, Sunderland, Massachusetts, USA. 690pp. Tischner, R. 2000. Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 23: 1005-1024. Wang, Z. and S. Li. 2004. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 27(3): 539-556. Weightman, R., C. Dyer, J. Buxton, and D. Farrington. 2006. Effects of light level, time of harvest and position within field on variability of tissue nitrate concentration in commercial crops of lettuce (Lactuca sativa) and endive (Cichorium endiva). Food Addit. Contam. 23(5): 462-469. Witt, H. H. and A. Jungk. 1977. Beurteilung der Molybdänversorgung von Pflanzen mit Hilfe der Moinduzierbaren Nitratreduktase‐Aktivität. Zeitschrift für Pflanzenernährung und Bodenkunde 140: 209-222. Wojciechowska, R. and I. Kowalska. 2011. The effect of foliar application of urea, Mo and BA on nitrate metabolism in lettuce leaves in the spring and summer-autumn seasons. Folia Hort. 23(2): 119-123. Ysart, G., P. Miller, G. Barrett, D. Farrington, P. Lawrance, and N. Harrison. 1999. Dietary exposures to nitrate in the UK. Food Addit. Contam. 16(12): 521-532. Zhang, M., C. Hu, X. Zhao, Q. Tan, X. Sun, A. Cao, M. Cui, and Y. Zhang. 2012. Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis). Plant Soil 355: 375-383. Zhang, S., K. Ma, and L. Chen. 2003. Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. Environ. Exp. Bot. 49(2): 121-133.
摘要: This study aimed to develop a culture method that can reduce the nitrate content in edible rape (Brassica napus L.), a leafy vegetable, including the cultivars 'Dragon', 'Vincent' and 'Fluke sweet'. Experiment 1 investigated the effects of shading before harvest on the plant growth, nitrate content, and rate of photosynthesis. Three Brassica napus cultivars were grown under 0%, 50% and 70% shade for five days before harvest, which were equivalent to 911, 574 and 224 μmol m-² s-¹, respectively. With an increasing degree of shade, the net photosynthetic rate (Pn) and electron transport rate (ETR) were significantly decreased, and the carbohydrate content and nitrate reductase activity were also reduced. After three days of shading, nitrate was seen to accumulate in the plants, and the nitrate accumulation was more significant after five days of shading. Under 70% of shade, the nitrate contents in 'Dragon', 'Vincent' and 'Fluke sweet' were increased to 3029, 6625 and 6505 mg/kg FW, respectively, and the total soluble protein contents were significantly decreased. With an increasing degree of shade, the fresh and dry weights decreased, under 70% of shade, they were reduced by 29%-38 % and 38%-51%, respectively. In addition, a significant leggy phenomenon, increased chlorophyll b content, and decreased chlorophyll a/b value were also observed. The nitrate content of 'Dragon' was lower than the contents of the other two cultivars in the shading experiment due to its greater nitrate reductase activity in comparison with that of the other two cultivars. Experiment 2 examined the effects of different application rates of organic fertilizer on plant growth scenarios and the nitrate accumulation of two Brassica napus cultivars, 'Vincent' and 'Fluke sweet'. Soybean meal ([S], Fwusow industry co. ltd.) and composed cow manure, tatara No.1 ([C], Tian Lao industry co. ltd.) organic fertilizer, were applied in various amounts at the intervals recommend by the manufacturers for the two crops. In both crops, the highest nitrogen use efficiency (NUE) of the Brassica napus was 120 kg N/ha treatment, following which the yield was significantly enhanced and the nitrate content of the plant was at the low level of 1740-2715 mg/kg FW. At higher application amounts of 240 kg N/ha soybean meal (2S) and 480 kg N/ha composed cow manure (4C) treatment, the nitrate reductase activities of the two cultivars did not increase, but showed a downward trend, resulting in a nitrate content of the highest cumulative amount of 2022-3175 mg/kg FW. Nitrogen, exchangeable phosphorus, and potassium in the media were also accumulated and the value of electrical conductivity (EC) was increased. In the first crop season, in comparison with the control, the nitrate contents of the two cultivars of rape with higher application amounts (2S and 4C) increased by 73%-87% and 35%-58%, respectively. In the second crop season, they were increased by 42%-54% and 25%-41%, respectively. The nitrogen release rate of the soybean meal was fast and high, and therefore the yield and relative nitrate content were greater in the first crop season. On the other hand, the nitrogen release from the composed cow manure was sustained and slow, and thus higher yields were obtained in the second crop season, while there was little difference in the nitrate content between the first and second crop season. Experiment 3 studied the effects of spraying with different concentrations of sodium molybdate on the plant growth and the nitrate content of 'Vincent' and 'Fluke sweet' cultivars. Foliar spraying with 0-1.2 mg/L sodium molybdate was used under 1 g/L urea application. At 0.9 mg/L sodium molybdate spraying, the fresh and dry weights of the shoots, plant height, and leaf area were increased. The nitrate content was significantly increased following urea treatment; however, it was decreased after spraying with 0.9 mg/L of sodium molybdate. In addition, the total soluble sugars, starch, free amine acid and total soluble protein content were significantly increased.
本試驗為研究降低葉菜之植體硝酸根離子含量的方法,選擇'青龍'、'文山'和'福祿甜'油菜進行本研究。 試驗一為瞭解採收前不同程度遮陰處理五天對油菜光合作用能力、植株生長情形及硝酸根離子累積的影響,於採收前不遮陰、50%及70%遮陰處理的平均光強度分別為911、574及224 μmol m-² s-¹。隨著遮陰程度的增加,其淨光合作用速率(Pn)與電子傳遞速率(ETR)有顯著的下降,碳水化合物含量減少,硝酸還原酶的活性降低,遮陰處理第3天即導致植體硝酸根離子的累積,隨著遮陰時間延長至第5天,硝酸根離子的累積更為明顯,70%遮陰處理'青龍'、'文山'和'福祿甜'油菜分別可達3029、6625及6505 mg/kg FW,且總可溶性蛋白的含量有顯著的降低。隨著遮陰程度的增加,於70%遮陰處理各品種植株鮮重與乾重有顯著的下降,分別減少了29%~38%及38%~51%,且有明顯的徒長現象,葉綠素b的含量有上升的趨勢,使葉綠素a/b值顯著的下降。在品種的部分,'青龍'硝酸還原酶活性相對較高,遮陰處理累積的硝酸根離子較少,為低光強度下可栽培之品種。 試驗二為不同有機質肥料施用量對'文山'和'福祿甜'油菜植株生長情形及硝酸根離子累積的影響,以大豆粕及田樂一號有機質肥料,依作物施肥手冊化學氮素推薦量的1、2及4倍肥料施用量當基肥一次施用,連續種植兩作。兩品種油菜於120 kg N/ha的處理有最高的氮素利用及吸收效率(NUE及NUpE),顯著提升植株生育表現及產量,維持低硝酸根離子的含量,為1740~2715 mg/kg FW。兩品種油菜於大豆粕240 kg N/ha和田樂一號480 kg N/ha處理,硝酸還原酶活性不再顯著增加,反而有下降趨勢,導致硝酸根離子含量達到最高累積量,約為2022~3175 mg/kg FW,並造成介質殘留無機態氮及交換性磷、鉀的增加和EC值(electrical conductivity, EC)的提高。兩品種油菜第一作栽培以大豆粕240 kg N/ha處理及田樂一號480 kg N/ha處理硝酸根離子的含量相較於對照組分別增加了73%~87%及35%~58%,第二作栽培分別增加了42%~54%及25%~41%。大豆粕氮素釋放率較快且肥份較高,第一作有較高的產量,且硝酸根離子相對累積量較多,而田樂一號的氮素持續緩慢地釋放,於第二作有較高的產量,其硝酸根離子含量於兩作中差異較小。 試驗三為不同濃度鉬酸鈉葉面噴施對'文山'和'福祿甜'油菜植株生育及硝酸根離子含量的影響,在1 g/L的尿素施用下,硝酸根離子含量顯著上升,每兩天以0~1.2 mg/L鉬酸鈉進行葉面噴施處理一次。於0.9 mg/L處理兩品種的地上部鮮乾重、株高及葉面積有所增加,葉片硝酸還原酶活性顯著上升,硝酸根離子含量則顯著下降,且總可溶性醣、澱粉、游離胺基酸和總可溶性蛋白含量也有明顯上升。
URI: http://hdl.handle.net/11455/89224
其他識別: U0005-1607201515545300
文章公開時間: 2018-07-17
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.