Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89235
標題: 不同林型對土壤種子庫組成之影響-以惠蓀林場為例
The Effect of Forest Type on Soil Seed Bank Composition – an Illustration of Hui-Sun Experimental Forest Station
作者: Tuan-Hsin Wu
吳慱昕
關鍵字: 土壤種子庫
生態復育
人工林
干擾
演替
soil seed bank
forest plantation
disturbance
succession
引用: 尹華軍、程新穎、賴挺、林波、劉慶 (2011) 川西亞高山65年人工雲杉林種子雨、種子庫和幼苗定居研究。植物生態學報 35(1): 35-44。 王直軍、曹敏、李國鋒、門羅、朵戈、札圖、宗偉 (2002) 鳥類對山黃麻種子的傳播及其生態作用。動物學研究 23(3): 214-219。 王俊閔 (2009) 臺中大坑地區植群生態之研究。中興大學森林系碩士論文。22-25頁。 王俊閔、邱清安、曾彥學、曾喜育、呂金誠 (2010) 台中大坑地區植群之研究。林業研究季刊 32(4): 7-22。 何春蓀 (2006) 臺灣地質概論臺灣地質圖說明書。經濟部中央地質調查所。40-70頁。 呂金誠、李明益、歐辰雄 (1994) 惠蓀林場楠櫧林帶次生林植群生態之研究。中興大學實驗林研究報告 16(1): 1-28。 呂福原、歐辰雄、廖秋成 (1984) 惠蓀林場蘭島溪沖積地山黃麻植群之演替(I)。興大實驗林研究報告 5: 11-24。 宋永昌 (2001) 植被生態學。華東師範大學出版社。99-103頁。 宋垚彬、張奇平、達良俊 (2010) 浙江天童受損常綠闊葉林實驗生態學研究(Ⅳ):土壤種子庫在受損常綠闊葉林恢復初期中的作用。華東師範大學學報 (自然科學版) 3: 1-9。 李帥峰、劉萬德、蘇建榮、張志鈞、劉慶雲 (2012) 季風常綠闊葉林土壤種子庫的恢復動態。林業科學 48(9):56-61。 李根柱、王賀新、朱書全、朱教君、于冬梅、陳英敏 (2008) 東北次生林區枯落物對天然更新的障礙作用。遼寧工程技術大學學報 (自然科學版) 27(2): 295-298。 周育如、顏江河 (2004) 惠蓀林場三種林分之枯落物分解速率研究。林業研究報告 26(4): 61-74。 林文智、郭耀綸、陳永修、張乃航、洪富文、馬復京 (2004) 台灣南部多納針闊葉林土壤種子庫雨森林更新。台灣林業科學 19(1): 33-42。 林朝棨 (1957) 臺灣地形。臺灣省文獻委員會。 唐勇、曹敏、張建侯、任泳紅 (1997) 刀耕火種對山黃麻林土壤種子庫的影響。雲南植物研究 19(4): 423-428。 唐勇、曹敏、張建侯、盛才余 (1998) 西雙版納白背桐次生林土壤種子庫、種子雨研究。植物生態學報 22(6): 505-512。 唐勇、曹敏、張建侯、盛才余 (1999) 西雙版納熱帶森林土壤種子庫與地上植被的關係。應用生態學報 10(3):279-282。 張乃航、馬復京、游漢明、許原瑞 (1998) 福山地區次生闊葉林土壤種子庫及幼苗動態。台灣林業科學 13(4): 279-289。 張志權、束文聖、藍崇鈺、黃銘洪 (2000) 引入土壤種子庫對鉛鋅尾礦廢棄地植被恢復的作用。植物生態學報 24(5): 601-607。 張芷熒 (2007) 臺灣地區歸化植物侵略性評估系統之建立。國立中興大學森林系碩士論文。 張煒銀、李鳴光、臧潤國、昝啟杰、王伯蓀 (2005) 外來雜草薇甘菊種群土壤種子庫動態。武漢植學研究 23(1): 49-52。 曹敏、唐勇、張建侯、盛才余 (1997) 西雙版納熱帶森林的土壤種子庫儲量及優勢成分。雲南植物研究 19(2): 177-183。 章志琴、林開敏、鄒雙全、曹光球 (2006) 不同調控措施對杉木枯落物分解的影響。浙江林學院學報 23(1): 65-69。 郭華仁 (2004) 種子生態與雜草管理。中華民國雜草學會會刊 25(2): 53-68。 陳志煌 (2001) 關刀溪森林生態系干擾地土壤種子庫及小苗組成之研究。國立中興大學植物學系碩士論文。P.17-28。 陳運造 (2006) 苗栗地區重要外來入侵植物圖誌。行政院農業委員會苗栗區農業改良場。 陳肇夏 (1977) 臺灣雪山山脈的一些地層問題。中國地質學會會刊 20:61-70。 陳肇夏 (1979) 臺灣中部橫貫公路沿線地質。中國地質學會會刊 3: 219-236。 彭軍、李旭光、付永川、張文兵、劉玉成 (1998) 重慶四面山常綠闊葉林種子庫與生態因子灰色關聯度分析。西南師範大學學報 (自然科學版) 23(6):700-705。 游漢明 (2000) 竹東林區天然闊葉林與人工疏伐林分更新之研究。國立中興大學森林學系博士論文。 湯冠臻 (2011) 台灣中部低海拔次生闊葉林土壤種子庫組成之研究:以台中大坑地區為例。國立中興大學森林學系碩士論文。P.37-48。 湯冠臻、曾彥學、曾喜育、呂金誠 (2011) 臺中大坑地區次生林土壤種子庫組成之研究。林業研究季刊 33(1): 35-48。 楊宜津 (2007) 台灣主要歸化植物之風險評估。慈濟大學生命科學研究所碩士論文。 達爾文 (1859) 物種起源。周建人、葉篤莊、方宗熙合譯本,商務印書館。 臧潤國 (1998) 林隙 (Gap) 更新動態研究進展。生態學雜誌 17(2):50-58。 劉彥彬、郭耀綸 (2011) 墾丁國家公園歸化植物種類及分布。國家公園學報 21(1): 75-87。 劉棠瑞、蘇鴻傑 (1986) 森林植物生態學。臺灣商務印書館。 蔡長宏 (1997) 關刀溪森林生態系干擾地更新之研究。國立中興大學植物學系碩士論文。 鄭思思、戴玲、林培、陳賢興、丁炳揚 (2009) 闊葉豐花草入侵群落物種組成及其土壤種子庫季節動態。浙江大學學報(農業與生命科學版) 35(6): 677-685。 黨偉光、高賢明、王瑾芳、李愛芳 (2008) 紫莖澤蘭入侵地區土壤種子庫特徵。生物多樣性 16(2): 126-132。 Boufford, D. E., H. Ohashi, T. C. Huang, C. F. Hsieh, J. L. Tsai, K. C. Yang, C. I Peng, C. S. Kuoh and A. Hsiao (2003) A checklist of the vascular plants of Taiwan. In Editorial Committee of the Flora of Taiwan Second Edition, Flora of Taiwan. Department of Botany, National Taiwan University. p.15-343 Céspedes, B., I. Torres, B. Luna, B. Pérez and J.M. Moreno (2011) Soil seed bank, fire season, and temporal patterns of germination in a seeder-dominated Mediterranean shrubland. Plant Ecology 213(3): 383-393. Chang, E. R., R. L. Jefferies and T. J. Carleton (2001) Relationship between vegetation and soil seed banks in an arctic coastal marsh. Journal of Ecology 89(3): 367-384. Connell, J. H. (1978) Diversity in tropical rain forests and coral reefs. Science 199: 1302-1310. Cronk, Q.C.B. and J.L. Fuller (1995) Plant Invaders: The Threat to Natural Ecosystems. Chapman and Hall, London, UK. Cusack, D. and F. Montagnini (2004) The role of native species plantations in recovery of understory woody diversity in degraded pasturelands of Costa Rica. Forest Ecology and Management 188: 1-15. Day, F. P. and C.D. Monk (1974) Vegetation patterns on a southern Appalachian watershed. Ecology 55: 1064-1074. Falinska, K. (1999) Seed bank dynamics in abandoned meadows during a 20-year period in the Bialowieza National Park. Journal of Ecology 87: 461-475. Fenner, M. and K. Thompson (2006) The Ecology of Seed. Reprinted. Cambridge University Press p. 67-92. Garwood, N. C. (1984) Seed germination in a seasonal tropical forest in Panama: a community study. Ecological Monographs 53(2): 159-181. Garwood, N. C. (1989) Tropical soil seed banks: a review. In: Leck, M. A., Parker, V. T., Simpson, R. L. (eds.) Ecology of Soil Seed Banks. Academic Press, San Diego. p. 149-209. Guariguata, M. R. (2000) Seed and seedling ecology of tree species in neotropical secondary forest: management implications. Ecological Applications 10(1): 145-154. Haggar, J., K. Wightman and R. Fisher (1997) The potential of plantations to foster woody regeneration within a deforested landscape in lowland Costa Rica. Forest Ecology and Management 99: 55-64. Happer, J. L. (1977) Population Biology of Plant. London. Academic Press. p.156-263. Higo, M., A. Shinohara and S. Kodama (1995) The regeneration behavior of major component species in the secondary forest dominated by Pinus densiflors and Quercus serrata in central Japan. Forest Ecology and Management 76: 1-10. Hyatt, L. A. (1999) Differences between seed bank composition and field recruitment in a temperate zone deciduous forest. The American Midland Naturalist 142(1): 31-38. Hyatt, L. A. and B. C. Brenda (2000) Seed bank formation during early secondary succession in a temperate deciduous forest. Journal of Ecology 88(3): 516-521. Igarashi, T. and Y. Kiyono (2008) The potential of hinoki (Chamaecyparis obtusa [Sieb. et Zucc.] Endlicher) plantation forests for the restoration of the original plant community in Japan. Forest Ecology and Management 255(1): 183-192. Kalamees, R. and M. Zobel (2002) The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology 83(4): 1017-1025. Leck, M. A., V. T. Parker and R. L. Simpson (1989) Ecology of Soil Seed Banks. Academic Press, San Diego. p. 118-122. MacDonald, C. C. (1977) Methods of Soil and Tissue Analysis Used in the Analytical Laboratory. Canadian Forestry Service Information Report MM-X-78. McLean, E. O. (1982) Soil pH and Lime Requirement. In: Page et al. (eds.) Methods of soil Analysis. Part II. Chemical and Microbiological Properties 2nd. ASA.CSSA. Madison, Wisconsin. Nakagoshi, N. (1985) The population structure of vegetation (ed.) Dordrecht, W. Junk Publishers. p. 551-570. Olsen, S. R. and L. E. Sommers (1982) Phosphorus. In: Page et al. (eds.) Methods of soil Analysis. Part II. Chemical and Microbiological Properties 2nd. ASA.CSSA. Madison, Wisconsin. 1159 pp. Parrotta, J.A., J. W. Turnbull and N. Jones (1997) Catalyzing native forest regeneration on degraded tropical lands. Forest Ecology and Management 99: 1-7. Rejmánek, M. (2000) Invasive plant: approaches and predictions. Austral Ecology 25(5): 497-506. Sakai, A., S. Sato, T. Sakai, S. Kuramoto and R. Tabuchi (2005) A soil seed bank in a mature conifer plantation and establishment of seedlings after clear-cuttingin southwest Japan. Journal of Forest Research 10: 295-304. Senbeta, F. and D. Teketay (2002) Soil seed banks in plantations and adjacent natural dry Afromontane forests of central and southern Ethiopia. Tropical Ecology 43(2): 229-242. Thompson, K. and J. P. Grime (1979) Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Journal of Ecology 67(3): 893-921. Valbuena, L. and L. Trabaud (2001) Contribution of the soil seed bank to post-fire recovery of a heathland. Plant Ecology 152(2): 175–83. Wang, J., H. Ren, L. Yang, D. Li and Q. Guo (2009) Soil seed banks in four 22-year-old plantations in South China: Implications for restoration. Forest Ecology and Management 258: 2000-2006. Whittaker (1970) The population structure of vegetation. In: Tuxen, R. (Hrsg.): Gesellschaftsmorphologie (Strukturforschung). Ber. Int. Symp. IVV Rinteln 1966: 39-62. Den Haag: Junk. Zobel M., R. Kalamees, K. Püssa, E. Roosaluste and M. Moora (2007) Soil seed bank and vegetation in mixed coniferous forest stands with different disturbance regimes. Forest Ecology and Management 250: 71-76.
摘要: 被干擾和劣化的森林生育地復舊是生態復育的重要工作之一,而利用土壤種子庫和人工造林是有效重建和加速修復退化生育地的方法。土壤種子庫被視為植群潛在更新的重要組成,在自然復育過程中扮演重要的角色。本研究即以種子發芽法調查惠蓀林場第三林班集水區內臺灣杉、香杉及臺灣肖楠人工林,及火燒跡地和次生林等5種植物社會之土壤種子庫組成與空間分布,並探討植被復育過程中歸化植物對土壤種子庫影響。2次試驗共發出25,910株種子苗,分屬於38科96屬120種,單位面積種子密度為9,596粒/m2,出現物種數最優勢的前三科為菊科 (22種)、禾本科 (13種) 及莎草科 (10種);土壤種子庫之種子儲量豐富的前三科為玄參科 (10,918株)、馬錢科 (3,230株) 及茜草科 (2,001株)。出現物種數最多的是臺灣肖楠人工林 (83種),其次依序為杉木人工林 (72種)、臺灣杉人工林 (69種) 和次生林 (69種),最低者為火燒跡地 (60種),在2次試驗中出現的物種差異頗大,2次皆有出現的物種有79種 (65.83%),僅出現在第一次的物種有18種 (15%),僅出現在第二次的物種有23種 (19.17%)。儲量前三名物種依序為母丁香、倒地蜈蚣和揚波,合計約佔種子庫儲量一半。人工林種子庫組成主要以草本為主,而火燒跡地和次生林則以灌木為優勢,各植物社會之土壤種子庫種子優勢組成不盡相同。土壤種子庫分布在空間上有顯著差異,土壤深度和植物社會影響種子庫儲量,除枯枝落葉層外,愈深的土層含愈少的種子。植物社會內的土壤種子庫儲量相近,但植物社會間則有顯著差異。火燒跡地歸化植物種類及種子儲量最高,而人工林土壤種子庫尚未受到歸化植物入侵。不同人工林之間土壤種子庫組成相似性相對較高,人工林與火燒跡地、次生林的相似性較低。土壤種子庫大致可分為人工林型、火燒跡地型和次生林型,人工林種子庫的組成與火燒跡地差距最遠,而次生林居中,且地上植群也有相似趨勢,顯示干擾類型會影響植群和種子庫的演替方向。土壤種子庫除了受到地上植群影響,環境差異也是重要因子,其中以光度、溫度影響較大。本研究結果顯示,土壤種子庫之種子組成與儲量受前期植群、造林樹種、撫育措施、過去及現生地上部植群、植群演替過程,以及種子傳播等影響。
Restricting disturbance and degraded forest habitat recoveries have been one of the important ecology resilience tasks. Soil seed bank and forest plantation are the effective rebuilding methods to speed up the degraded forest habitat recovery. As the potential population in plant regeneration, soil seed bank plays a significant role for the vegetation restoration. This study used seed germination method to investigate the seed banks in one burned areas, one secondary forest and three types of forest plantation, Taiwania cryptomerioides, Calocedrus formosana and Cunninghamia lanceolata, at the watershed of the third forest group in Hui-Sun Experimental Forest Station National Chung Hsing University (NCHU), and explored the influence of naturalized plants on the soil seed bank. There were 25,910 seeds sprouted in total, and 38 families, 96 genera and 120 species secended with average density 9,596 seeds/ m². Among these, Asteraceae (22 species), Poaceae (13 species), and Cyperaceae (10 species) were the top three families with more species numbers in the soil seed bank. Scrophulariaceae (10,918 seeds), Loganiaceae (3,230 seeds), and Rubiaceae were the top three families with more seeds numbers in the soil seed bank. Calocedrus formosana forest plantation had the highest species number (83 species) of the soil seed bank composition, and then Cunninghamia lanceolata forest plantation (72 species), Taiwania cryptomerioides forest plantation (69 species), secondary forest (69 species), and burned area (60 species). It is difference in considerable species between two tests. There were 79 species (65.83%) appeared both in 2 tests, 18 species (15%) only in the first, and 23 species (19.17%) only in the second. The soil seed bank of forest plantation was mainly composed of herbaceous species while burned area and secondary forest had more shrubs. The top three species quantity in the soil seed bank were Torenia flava, Torenia concolor, and Buddleja asiatica, occupied about 50% of the total quantity. And the main quantities of soil seed bank composition between five vegetation communities were different. However, Trema orientalis is the only tree species of the top ten. There was a significant difference in the space distribution of seed bank. Soil depth and vegetation community influenced the remaining quantity in the soil seed bank. Other than the litter layer, the deeper the soil layer was, the fewer the seeds. Even though the soil seed bank remaining quantity was similar within the vegetation communities, there were still significant differences among the vegetation communities. Burned area had the highest amount of naturalized plants and seed remaining quantity while the soil seed bank in forest plantation hadn't been invaded by naturalized plants. The similarity of the soil seed bank compositions among different forest plantation was comparatively higher, but was lower among forest plantation, burned area and secondary forest. Soil seeds bank can be divided into forest plantation type, burned area type and secondary forest type. The seeds bank compositions are most different between forest plantation and burned area, while secondary middle. Vegetation has the similar trend. The type of interference can affect vegetation and seed bank succession. Soil seeds bank were affect not only by vegetation, but also environment are also important factors, with luminosity and temperature greater impact. The results showed that the composition of soil seed bank was affected by early-stage vegetation, forest plantation, nurture measures, past and current aboveground vegetation, vegetation succession process, and seed dispersal, etc..
URI: http://hdl.handle.net/11455/89235
文章公開時間: 2017-01-23
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.