Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89319
標題: Bacillus subtilis TKS1-1於水稻白葉枯病之防治應用與其防治機制之探討
Application of microbial agent Bacillus subtilis TKS1-1 on the control of rice bacterial blight and its putative control mechanisms
作者: Yuan-Jia Jan
詹元嘉
關鍵字: 枯草桿菌
白葉枯病
抗生物質
誘導抗病
Bacillus subtilis
rice bacterial blight
biocontrol
引用: 王詩雯。2002。拮抗性桿菌屬 (Bacillus spp.) 於水稻白葉枯病防治之應用及其作用機制。國立中興大學植物病理學研究所碩士論文。84頁。 行政院農業委員會。2013。稻米。24-35頁。102年農業統計年報。行政院農業委員會。台北。321頁。 江迪蔚。2006。枯草桿菌Bacillus subtilis WG6-14於檬果黑斑病防治之應用潛力與作用機制。國立中興大學植物病理系碩士論文。79頁。 邱燕欣。2004。拮抗性枯草桿菌Bacillus subtilis WG6-14菌株於柑橘瘍病防治應用。國立中興大學植物病理系碩士論文。92頁。 李雅惠。2002。拮抗性桿菌屬 (Bacillus spp.) 之分離、培養與抗生活性之改進以及病害防治之應用。國立中興大學植物病理系碩士論文。79頁。 徐世典、張東柱、張清安、蔡進來、蔡東篡。2002。台灣植物病害名彙。第四版。中華民國植物病理學會。台中。386頁。 陳治官。2003。壹、前言 一、作物簡介。第2-8頁。植物保護圖鑑系列8水稻保護 (上冊)。李金龍編。行政院農業委員會動植物防疫檢疫局。台北。448 頁。 陳純葳、許秀惠。2009。台灣水稻性細菌性病害之發生與防治。台灣水稻保護成果及新展望研討會專刊,第45-64頁。 郭芝延。2013。枯草桿菌TKS1-1於十字花科蔬菜黑班病防治之應用潛力與作用機制。國立中興大學植物病理系碩士論文。77頁。 張義璋。2004。台灣水稻重要病害之生態及防治要領。水稻健康管理研討會專集,第75-101頁。財團法人全方位農業振興基金會。台北。158頁。 曾德賜。2015。農藥藥理與應用殺菌劑。初版,151 pp。台北:藝軒。 黃德昌。2008。台灣作物細菌性病害防治要領。作物診斷與農藥安全使用技術手冊第142-161頁。國立中興大學農業暨自然資源學院農業推廣中心編印。台中。 鄧耀宗。1995。水稻。台灣農家要覽農作篇(一): 49頁。行政院農業委員會。台北。 謝式坢鈺。1971。稻白葉枯病抗病性檢定。稻作病害。第113-122頁。中國農村復興聯合委員會。台中。372頁。 謝式坢鈺。1978。水稻白葉枯病原細菌Xanthomonas oryzae之生態。第167-184頁。邱人璋編。水稻病蟲害:生態學與流行病學。中國農村復興聯合委員會。台北。331頁。 謝式坢鈺。2003。水稻白葉枯病。第323-338頁。植物保護圖鑑系列 8 水稻保護 (下冊)。李金龍編。行政院農業委員會動植物防疫檢疫局。台北。448頁。 謝麗娟、張義璋、謝廷芳。2006。水稻台中秈10號不同生育期對引起淡黃化型白葉枯病之菌株反應。台灣農業研究 55(3):201-211。 Alvarez, F., Castro, M., Príncipe, A., 2012. The plant‐associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J. Appl. Microbiol. 112: 159-174. Arrebola, E., Jacobs, R. and Korsten, L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108: 386-395. Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. J. Plant Physiol. 134: 307-319. Baker, K. and Cook, R. J., 1974. Biological control of plant pathogens. WH Freeman and Company. 433 pp. Bechard, J., Eastwell, K., Sholberg, P., Mazza, G. and Skura, B. 1998. Isolation and partial chemical characterization of an antimicrobial peptide produced by a strain of Bacillus subtilis. J. Agric. Food Chem. 46: 5355-5361. Beever, R. and Bollard, E. 1970. The nature of the stimulation of fungal growth by potato extract. J. Gen. Microbiol. 60: 273-279. Brozek V., Dias L. M., Hadano H., Münks K. W., Sawada H., Sirven C., et al. 2012. Use of isothiazolecarboxamides to create latent host defenses in a plant. world patents, WO 2012084858 A3. Carrillo, C., Teruel, J. A., Aranda, F. J. and Ortiz, A. 2003. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta 1611: 91-97. Choi, J., Matsuyama, N. and Wakimoto, S. 1980. Serological specificity of Xanthomonas campestris pv. oryzae. Nippon. Shokubutsu. Byori. Gakkaiho. 46: 455-463. Deleu, M., Paquot, M. and Nylander, T. 2008. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. J. Biophys. 94: 2667-2679. Devadath, S. 1989. Chemical control of bacterial blight rice. p. 89-98. in:'Bacterial Blight of Rice'. Proceeding of International Workshop on Bacterial Blight of Rice. 14-18 March 1988. International Rice Research Institute, Manilia, Philippines. 235 pp. Garrett, S. D. 1965. Towards biological control of soil-borne plant pathogens. Ecology of Soilborne Plant Pathogens. University of California Press, Berkeley. 571 pp. Goto, M. 1964. Kresek and pale yellow leaf, systemic symptoms of bacterial leaf blight of rice caused by Xanthomonas oryzae (Uyeda et Ishiyama) Dowson. Plant Dis. Reptr. 48: 858-861. Guo, Q., Dong, W., Li, S., et al. 2014. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol. Res. 169: 533-540. Hashioka, Y. 1951. Bacterial leaf blight of rice and its control. Agr. and Hort. 26: 644 - 648. Higashide, E., Hatano, K., Shibata, M. and Nakazawa, K. 1968. Enduracidin, a new antibiotic. Isolation and characterization. J. Antibiot. 21: 126-137. Horn, J. N., Cravens, A. and Grossfield, A. 2013. Interactions between fengycin and model bilayers quantified by coarse-grained molecular dynamics. Biophys. J. 105: 1612-1623. Hsieh, S. Recent status and future prospects on bacterial blight in Taiwan Proceedings of the The Rice Diseases Proc. Symp. at TARI, 1990, 117-130. Hsieh, S. and Buddenhagen, I. 1974. Suppressing effects of Erwinia herbicola on infection by X anthomonas oryzae and on symptom development in rice. Phytopathology 64:1182-1185. Huang, T.-P., Tzeng, D. D.-S., Wong, A. C., et al. 2012. DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PloS one 7: e42124. Idris, E. E., Bochow, H., Ross, H. and Borriuss, R. 2004. Use of Bacillus subtilis as biocontrol agent. VI. Phytohormone-like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus. Z. Pflanzenkr. Pflanzenschutz 111: 583-597. Katz, E. and Demain, A. L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449. Kim, H.-S., Park, J., Choi, S.-W., et al. 2003. Isolation and characterization of Bacillus strains for biological control. J. Microbiol. 41: 196-201. Kloepper, J. W., Ryu, C.-M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266. Kurusu, K., Ohba, K., Arai., T. and FUKUSHIMA, K. 1987. New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J. Antibiot. 40: 1506-1514. Leclère, V., Béchet, M., Adam, A., et al. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. J. Appl. Environ. Microbiol. 71: 4577-4584. Lo, C. 1998. General mechanisms of action of microbial biocontrol agents. Plant. Pathol. Bulletin. 7: 155-166. Malfanova, N., Franzil, L., Lugtenberg, B., Chebotar, V. and Ongena, M. 2012. Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch. Microbiol. 194: 893-899. Maloy, O. C. and Lang, K. J. 2003. Carl Freiherr von Tubeuf: Pioneer in biological control of plant diseases. Annu Rev Phytopathol 41: 41-52. Mew, T. W. and Misra, J., 1994. A manual of rice seed health testing. Int. Rice Res. Inst. 113 pp. Meyers, E., Weisenborn, F. L., Pansy, F. E., et al. 1970. Janiemycin, a new peptide antibiotic. J. Antibiot. 23: 502-507. Mizukami, T. and Wakimoto, S. 1969. Epidemiology and control of bacterial leaf blight of rice. Annu. Rev. Phytopathol. 7: 51-72. Moyne, A. L., Shelby, R., Cleveland, T. and Tuzun, S. 2001. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J. Appl. Environ. Microbiol. 90: 622-629. Nakkeeran, S., Kavitha, K., Chandrasekar, G., Renukadevi, P. and Fernando, W. 2006. Induction of plant defence compounds by Pseudomonas chlororaphis PA23 and Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Biocontrol Sci. Techn. 16: 403-416. Nguyen, M. and Ranamukhaarachchi, S. 2010. Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J. Plant Pathol. 395-405. NIÑO‐LIU, D. O., Ronald, P. C. and Bogdanove, A. J. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol. Plant Pathol. 7: 303-324. OEPP/EPPO 2007. Xanthomonas oryzae. EPPO Bull. 37: 543-553. Ongena, M., Jacques, P., Touré, Y., Destain, J., Jabrane, A. and Thonart, P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol. 69: 29-38. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. Ongena, M., Jourdan, E., Adam, A., et al. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090. Ortíz-Castro, R., Valencia-Cantero, E. and López-Bucio, J. 2008. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant. Signal. Behav. 3: 263-275. Ou, S., Nuque, F. and Silva, J. 1971. Varietal resistance to bacterial blight of rice. Plant Dis. Reptr. 55: 17-21. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. and Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Phytopathology 52: 347-375. Priest, F. G. 1993. Systematics and ecology of Bacillus. In: Bacillus subtilis and Other Gram-positive Bacteria: Biocehmistry, Physiology, and Molecular Genetics, American Society of Microbiology, Washington. p.3-16. Raj, S. N., Chaluvaraju, G., Amruthesh, K., Shetty, H. S., Reddy, M. and Kloepper, J. W. 2003. Induction of growth promotion and resistance against downy mildew on pearl millet (Pennisetum glaucum) by rhizobacteria. Plant Dis. 87: 380-384. Romero, D., de Vicente, A., Rakotoaly, R. H., et al. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 20: 430-440. Ryu, C.-M., Farag, M. A., Hu, C.-H., et al. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100: 4927-4932. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W. and Paré, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026. Ryu, C. M., Murphy, J. F., Mysore, K. S. and Kloepper, J. W. 2004. Plant growth‐promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1‐independent and jasmonic acid‐dependent signaling pathway. J. Plant. 39: 381-392. Sakthivel, N. and Gnanamanickam, S. 1987. Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and for enhancement of grain yields in rice (Oryza sativa). Appl. Environ. Microbiol. 53: 2056-2069. Schallmey, M., Singh, A. and Ward, O. P. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. Sen, S. and Chandrasekhar, C. 2014. Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress. Asian J. Plant Sci. Res. 4: 62-67. Sivamani, E., Anuratha, C. and Gnanamanickam, S. 1987. Toxicity of Pseudomonas fluorescens towards bacterial plant pathogens of banana (Pseudomonas solanacearum) and rice (Xanthomonas campestris pv. oryzae). Curr. Sci. 56: 547-558. Srivastava, D. 1967. Epidemiology and control of bacterial blight of rice in India. Tokyo. Agr. Forest. Fish. Res. Counc. Trop. Agr. Res. Ser. Sivasakthi, S., Usharani, G. and Saranraj, P. 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. Afr J Agric Res 9: 1265-1277. Sood, A. K., and Aggarwal, P. 2002. Bacterial diseases of field crops, In: Gupta, V. K. and Y. A. Paul. Diseases of Field Crops, Indus Publishing Company, New Delhi. p. 333-337. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. Swings, J., Van den Mooter, M., Vauterin, L., et al. 1990. Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. rev. Int. J. Syst. Bacteriol. 40: 309-311. Udayashankar, A., Nayaka, S. C., Reddy, M. and Srinivas, C. 2011. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biocontrol 59: 114-122. Vallad, G. E. and Goodman, R. M. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 44: 1920-1934. Waewthongrak, W., Leelasuphakul, W. and McCollum, G. 2014. Cyclic lipopeptides from Bacillus subtilis ABS–S14 elicit defense-related gene expression in citrus fruit. PLoS One 9: e109386. Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97: 250-266. Wu, Y. C., Raza, W. and Huang, Q. W. 2014. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. J. Microbiol. Biotechnol. 24: 1327-1336. Xu, Z., Shao, J., Li, B., Yan, X., Shen, Q. and Zhang, R. 2013. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol. 79: 808-815. Yan, Z., Reddy, M., Ryu, C.-M., McInroy, J. A., Wilson, M. and Kloepper, J. W. 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92: 1329-1333. Yuan, J., Raza, W., Shen, Q. and Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. J. Appl. Environ. Microbiol. 78: 5942-5944. Zehnder, G., Kloepper, J., Yao, C. and Wei, G. 1997. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J. Econ. Entomol. 90: 391-396. Zhang, H., Xie, X., Kim, M. S., Kornyeyev, D. A., Holaday, S. and Paré, P. W. 2008. Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J. 56: 264-273.
摘要: 水稻白葉枯病為水稻上重要的細菌性病害,白葉枯病在田間通常於分蘗盛期發生,病徵開始在葉緣離葉尖五到六公分處出現暗綠色、水浸狀小斑點,然後逐漸延長而變成黃或枯黃色。目前常見推薦應用於水稻白葉枯病的防治措施主要有適當的田間操作模式與清園、肥培管理、施用化學藥劑防治、栽種抗病品種或是施用生物製劑等。桿菌屬 (Bacillus spp.) 已知被用於防治多種植物病害,考量到其對環境之友善性及可能具備多種機制以抑制病害發生,施用桿菌屬作為生物防治是一個深具潛力的防治方法。本研究旨在探討本土拮抗性枯草桿菌菌株TKS1-1於水稻白葉枯病之防治應用及其防治機制。在拮抗試驗中證實了枯草桿菌TKS1-1對於水稻白葉枯病菌WF6具有優異的抑制效果。在溫室試驗中,在接種白葉枯病菌菌株WF6前7天、2天或同時以剪葉浸漬法接種枯草桿菌TKS1-1,結果顯示不論哪一種處理都可以有效的抑制水稻白葉枯病的病徵發展,另外於水稻台農67號移植後每週澆灌一次枯草桿菌TKS1-1 100倍稀釋菌液,共澆灌三週後接種水稻白葉枯病,其病斑長度也較水處理組少了一公分。除此之外,澆灌枯草桿菌TKS1-1稀釋100倍菌液16小時後,結果顯示與處理水之對照組相比,處理枯草桿菌TKS1-1處理組之水稻台農67號之PR1a、PAL、NPR1及WRKY45基因也明顯被誘導。此外,在預先澆灌枯草桿菌TKS1-1再接種白葉枯病菌WF6之處理組中可以觀察到phenylalanine ammonia lyase、peroxidase以及polyphenol oxidase之活性皆較僅接種白葉枯病菌WF6、僅澆灌枯草桿菌TKS1-1稀釋100倍菌液及未處理組要高。為瞭解白葉枯病菌WF6在水稻葉片中之菌量是否受到影響,先以剪葉法接種經稀釋100倍之枯草桿菌TKS1-1培養液後再接種白葉枯病菌WF6,接種後0、3、6及9天採傷口下一公分葉片磨碎後以序列稀釋方式計算菌量,結果顯示在接種後第3天時TKS1-1之處理組之白葉枯病菌菌量明顯較水處理組低,此差距到接種後第9天依然存在,推測應為枯草桿菌TKS1-1產生拮抗水稻白葉枯病原菌WF6之物質而抑制其生長所致。此外,於水稻植株台農67號移植後開始處理第一次,之後每週一次共三次,分別以稀釋100倍、500倍及1000倍之枯草桿菌TKS1-1菌液澆灌處理水稻台農67號,結果顯示與水對照組相比三種不同稀釋濃度皆有明顯生長促進的效果。為鑑定出對水稻白葉枯病菌WF6具有抑制活性的物質,本研究中利用了Sep-pakⓇ C18管柱與Hi-trap Q陰離子交換樹脂進一步純化,收集對水稻白葉枯病菌WF6具有抑制活性之流出液後以等體積丁醇進行液液萃取,再利用液相層析串聯式質譜儀進行正、負離子全掃描分析,獲得之圖譜可以得知活性區段(滯留時間9.971分鐘與10.492分鐘) 與iturin A之滯留時間類似,與surfactin則不相似;但由質譜圖的數據中可以觀察到質荷比訊號大致落在1029.9至1187.7,此結果顯示由枯草桿菌TKS1-1產生對水稻白葉枯病菌WF6具有抑制活性之抗生物質與iturin A為不同之化合物。除此之外,0.0001 M之iturin A對水稻白葉枯病菌WF6僅有些微之抑制活性,而surfactin則完全沒有抑制活性。綜合上述特性顯示預先施用枯草桿菌TKS1-1可有效抑制水稻白葉枯病並促進水稻植株的生長,且其良好的防治效果可歸功於產生對水稻白葉枯病菌WF6具有抑制活性之抗生物質與誘導水稻植株抗病相關基因、蛋白質之表現。
Xanthomonas oryzae pv. oryzae causes leaf blight of rice, which is one of the devastating diseases of rice plant. The use of chemical pesticides and resistant rice cultivars is the most common cultural practice for the control of rice bacterial blight. However, over-doses of chemical pesticides are detrimental to the ecological environment and breeding cultivars for resistant to pests may take long time. Additionally, with the emergence of drug-resistant strains, the efficacy of these control measures is hindered. Application of beneficial microorganisms may serve as an alternative strategy to solve this problem. Bacillus species are well known for their potential in disease suppression and plant promotion. Thus, they are considered as one of predominant genera of plant growth promotion rhizobacteria (PGPR). PGPR could be use as biological control agents by exhibiting several mechanisms including antagonism, competition for nutrient and induction of plant defense system. The main objectives of the study are to investigate the potential of Bacillus subtilis TKS1-1 for the control of rice bacterial blight and the possible mechanisms involved in disease control. By dual culture assay, B. subtilis TKS1-1 showed superior antagonistic activity against X. oryzae WF6. Application of B. subtilis strain TKS1-1 at the time of or prior to inoculation with X. oryzae WF6 was found to suppress rice bacterial blight. In addition, the lesion length of leaf blight was 1 cm less by the drenching application with 100-fold diluted endospores formulation of B. subtilis TKS1-1 compared to the water control, suggesting a contribution to induce systemic resistance. Spray-application of B. subtilis TKS1-1 endospores formulation (5 x 107 CFU/ ml) was shown to increase the expression of several plant defense-related genes inclulding PR1a, PAL, NPR1, and WRKY45 at 16 hours post application in comparsion with the water control. Furthermore, drenching application of strain TKS1-1 7 days prior to inoculation of the pathogen was found to increase the activity of phenylalanine ammonia lyase, peroxidase and polyphenol oxidase at 48 hrs post-inoculation in comparision with other treatments. Reduction in the cell population of X. oryzae WF6 in rice leaves was observed when B. subtilis TKS1-1 was introduced to the leaves, suggesting putative antibiotics may be produced by B. subtilis TKS1-1. Application of B. subtilis TKS1-1 formulation diluted 100-fold, 500-fold and 1000-fold on rice cultivar TNG67 all showed significant promotion of plant growth. To determine the putative compounds that inhibit growth of the leaf blight pathogen, cultural broth of B. subtilis TKS1-1 in SYM broth was subjected to solid phase extraction with Sep-pak® C18 cartridge, purification by ion-exchange chromatography using a Hi-trap Q column and then LC/MS/MS analysis. The chromatograms corresponding to LC/MS/MS analysis indicated that the antibiotics from B. subtilis TKS1-1 retained at 9.971 and 10.492 mins were similar to iturin A but distinct from surfactins. Results from mass spectra showed that the mass of charge ratio of antibiotics produced by B. subtilis TKS1-1 are around 1.029.9 to 1187.7 which are different from iturin A. Additionally, iturin A and surfactins at the concentration of 0.0001 M showed trivial or did not show antagonistic activity to X. oryzae WF6, respectively. The findings suggested that B. subtilis TKS1-1 exhibited superior efficacy in suppression of rice bacterial blight and in growth promotion. The biocontrol potential is partly attributed to the antibiotics produced and to the induction of plant defense response by B. subtilis TKS1-1.
URI: http://hdl.handle.net/11455/89319
文章公開時間: 2015-08-24
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.