Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89321
標題: 台灣產小麥赤黴病菌之鑑定與其真菌毒素化學型分析
Identification and Mycotoxin Chemotypes of Fusarium Head Blight Pathogens of Wheat in Taiwan
作者: Yi-Hong Cheng
鄭翊宏
關鍵字: 小麥赤黴病
真菌毒素化學型
脫氧雪腐鐮孢烯醇
雪腐鐮孢烯醇
Fusarium head blight
chemotype
DON
NIV
Fusarium asiaticum
Fusarium graminearum
Fusarium meridionale
引用: 沈勳。2000。淺談小麥與在麵粉的應用。台中區農業改良場特刊105: 240。 郭建志、林訓仕、廖君達、黃冬青。2013。小麥赤黴病之病原鑑定及防治藥劑篩選。台中區農業改良場101年度科技計畫研究成果發表會論文輯。169-75。趙佳鴻主編。台中:農委會台中區農業改良場。 Alvarez CL, Somma S, Moretti A, Fernández Pinto V, 2010. Aggressiveness of Fusarium graminearum sensu stricto isolates in wheat kernels in Argentina. Journal of Phytopathology 158, 173-81. Aoki T, O'donnell K, 1999. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the Group 1 population of F. graminearum. Mycologia 91, 597-609. Bily A, Reid L, Savard M, Reddy R, Blackwell B, Campbell C, Krantis A, Durst T, Philogene B, Arnason J, 2004. Analysis of Fusarium graminearum mycotoxins in different biological matrices by LC/MS. Mycopathologia 157, 117-26. Brown DW, Mccormick SP, Alexander NJ, Proctor RH, Desjardins AE, 2002. Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genetics and Biology 36, 224-33. Carter J, Rezanoor H, Desjardins A, Nicholson P, 2000. Variation in Fusarium graminearum isolates from Nepal associated with their host of origin. Plant Pathology 49, 452-60. Carter J, Rezanoor H, Holden D, Desjardins A, Plattner R, Nicholson P, 2002. Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. European Journal of Plant Pathology 108, 573-83. Cavinder B, Sikhakolli U, Fellows KM, Trail F, 2012. Sexual development and ascospore discharge in Fusarium graminearum. Journal of Visualized Experiments: JoVE. Chandler EA, Simpson DR, Thomsett MA, Nicholson P, 2003. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiological and Molecular Plant Pathology 62, 355-67. De Tempe J, 1953. The blotter method of seed health testing. Proceedings of International Seed Testing Association 21, 133-51. Desjardins AE, 2006. Fusarium Mycotoxins: Chemistry, Genetics, and Biology. American Phytopathological Society, USA, 260 pages. Desjardins AE, Jarosz AM, Plattner RD, Alexander NJ, Brown DW, Jurgenson JE, 2004. Patterns of trichothecene production, genetic variability, and virulence to wheat of Fusarium graminearum from smallholder farms in Nepal. Journal of Agricultural and Food Chemistry 52, 6341-6. Desjardins AE, Proctor RH, Bai G, Mccormick SP, Shaner G, Buechley G, Hohn TM, 1996. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Molecular Plant Microbe Interactions 9, 775-81. Evans C, Xie W, Dill-Macky R, Mirocha C, 2000. Biosynthesis of deoxynivalenol in spikelets of barley inoculated with macroconidia of Fusarium graminearum. Plant Disease 84, 654-60. Faria CB, Almeida-Ferreira GC, Gagliardi KB, Alves TCA, Tessmann DJ, Machinski Junior M, Barbosa-Tessmann IP, 2012. Use of the polymerase chain reaction for detection of Fusarium graminearum in bulgur wheat. Food Science and Technology 32, 201-8. Geiser DM, Del Mar Jiménez-Gasco M, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, O'Donnell K, 2004. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. In. Molecular Diversity and PCR-detection of Toxigenic Fusarium Species and Ochratoxigenic Fungi. Springer, 473-9. Gilbert J, Tekauz A, 2000. Review: Recent developments in research on Fusarium head blight of wheat in Canada. Canadian Journal of Plant Pathology 22, 1-8. Jennings P, Coates M, Turner J, Chandler E, Nicholson P, 2004a. Determination of deoxynivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathology 53, 182-90. Jennings P, Coates M, Walsh K, Turner J, Nicholson P, 2004b. Determination of deoxynivalenol‐and nivalenol‐producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathology 53, 643-52. Huang, J. W., and Sun S. K. 1997. The Genus Fusarium from Taiwan. Shih Way Press, Taichung, Taiwan, 116 pages. Karugia GW, Suga H, Gale LR, Nakajima T, Tomimura K, Hyakumachi M, 2009a. Population structure of the Fusarium graminearum species complex from a single Japanese wheat field sampled in two consecutive years. Plant Disease 93, 170-4. Karugia GW, Suga H, Gale LR, Nakajima T, Ueda A, Hyakumachi M, 2009b. Population structure of Fusarium asiaticum from two Japanese regions and eastern China. Journal of General Plant Pathology 75, 110-8. Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M, 2007. Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Bioscience, Biotechnology and Biochemistry 71, 2105-23. Lee J, Chang IY, Kim H, Yun SH, Leslie JF, Lee YW, 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Applied and Environmental Microbiology 75, 3289-95. Lee J, Kim H, Jeon JJ, Kim HS, Zeller KA, Carter LL, Leslie JF, Lee YW, 2012. Population structure of and mycotoxin production by Fusarium graminearum from maize in South Korea. Applied and Environmental Microbiology 78, 2161-7. Lee T, Oh DW, Kim HS, Lee J, Kim YH, Yun SH, Lee YW, 2001. Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Applied and Environmental Microbiology 67, 2966-72. Leonard KJ, Bushnell WR, 2003. Fusarium Head Blight of Wheat and Barley. American Phytopathological Society, USA, 512 pages. Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, Schaefer W, 2006. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Molecular Plant Pathology 7, 449-61. Malbrán I, Mourelos C, Girotti J, Aulicino M, Balatti P, Lori G, 2012. Aggressiveness variation of Fusarium graminearum isolates from Argentina following point inoculation of field grown wheat spikes. Crop Protection 42, 234-43. McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, Van Sanford D, 2012. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease 96, 1712-28. Minervini F, Fornelli F, Flynn KM, 2004. Toxicity and apoptosis induced by the mycotoxins nivalenol, deoxynivalenol and fumonisin B1 in a human erythroleukemia cell line. Toxicology in Vitro 18, 21-8. Monds RD, Cromey MG, Lauren DR, Di Menna M, Marshall J, 2005. Fusarium graminearum, F. cortaderiae and F. pseudograminearum in New Zealand: molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of species. Mycological Research 109, 410-20. Nelson, P. E., Toussoun, T. A., and Marasas, W F. O. 1983. Fusarium Species: An Illustrated Manual for Identification. The Pennsylvania University Press, Univerisity Park and London. Nganje WE, Kaitibie S, Wilson WW, Leistritz FL, Bangsund DA, 2004. Economic impacts of Fusarium head blight in wheat and barley: 1993-2001. Department of Agribusiness and Applied Economics, Agricultural Experiment Station, North Dakota State University. Nicholson P, Simpson D, Weston G, Rezanoor H, Lees A, Parry D, Joyce D, 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology 53, 17-37. O'Donnell K, Kistler HC, Tacke BK, Casper HH, 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences 97, 7905-10. O'Donnell K, Ward TJ, Aberra D, Kistler HC, Aoki T, Orwig N, Kimura M, Bjornstad S, Klemsdal SS, 2008. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genetics and Biology 45, 1514-22. O'Donnell K, Ward TJ, Geiser DM, Corby Kistler H, Aoki T, 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology 41, 600-23. Prescott J, Burnett P, Saari E, Ransom J, Bowman J, Milliano WD, Singh R, Bekele G, 1986. Wheat Diseases and Pests. A Guide for Field Identification. International Maize and Wheat Improvement Center, Mexico, 138 pages. Proctor RH, Mccormick SP, Alexander NJ, Desjardins AE, 2009. Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Molecular Microbiology 74, 1128-42. Qiu J, Xu J, Shi J, 2014. Molecular characterization of the Fusarium graminearum species complex in Eastern China. European Journal of Plant Pathology 139, 811-23. Qu B, Li H, Zhang J, Huang T, Carter J, Liao Y, Nicholson P, 2008a. Comparison of genetic diversity and pathogenicity of Fusarium head blight pathogens from China and Europe by SSCP and seedling assays on wheat. Plant Pathology 57, 642-51. Qu B, Li H, Zhang J, Xu Y, Huang T, Wu A, Zhao C, Carter J, Nicholson P, Liao Y, 2008b. Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathology 57, 15-24. Sarver BA, Ward TJ, Gale LR, Broz K, Kistler HC, Aoki T, Nicholson P, Carter J, O'Donnell K, 2011. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genetics and Biology 48, 1096-107. Sawada K, 1919. Descriptive catalogue of the Formosan fungi Part I. Special Bulletin of the Formosa Agriculteral Experimental Station. 19, 258. Schilling AG, Moller EM, Geiger HH, 1996. Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology 86, 515-22. Schmale III, D.G. and G.C. Bergstrom. 2003 . Fusarium head blight in wheat. The Plant Health Instructor. DOI:10.1094/PHI-I-2003-0612-01. Shen C-M, Hu Y-C, Sun H-Y, Li W, Guo J-H, Chen H-G, 2012. Geographic distribution of trichothecene chemotypes of the Fusarium graminearum species complex in major winter wheat production areas of China. Plant Disease 96, 1172-8. Shewry PR, 2009. Wheat. Journal of Experimental Botany 60, 1537-53. Snyder, W. C., and Hansen, H. N. 1945. The species concept in Fusarium with reference to section Discolor and other sections. American Journal of Botany 32, 657-666. Spolti P, Del Ponte EM, Cummings JA, Dong Y, Bergstrom GC, 2014. Fitness attributes of Fusarium graminearum isolates from wheat in New York possessing a 3-ADON or 15-ADON trichothecene genotype. Phytopathology 104, 513-9. Stack RW, McMullen MP, 2010. A visual scale to estimate severity of Fusarium head blight in wheat. North Dakota Stast Univerisity Extension Severice, 1095. Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Toth B, Varga J, O'donnell K, 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genetics and Biology 44, 1191-204. Suga H, Karugia GW, Ward T, Gale LR, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K, Hyakumachi M, 2008. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98, 159-66. Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S, 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725-2729. Tekauz A, Mccallum B, Gilbert J, 2000. Review: Fusarium head blight of barley in western Canada. Canadian Journal of Plant Pathology 22, 9-16. Tuite J, 1969. Plant pathological methods. Fungi and bacteria. Burgess Publishing Company, USA, 239 pages. Ward TJ, Clear RM, Rooney AP, O'donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW, 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology 45, 473-84. Wollenweber, H. W., and Reinking, O. A. 1935. Die Fusarien. Paul Parey, Brelin, Germany. 335 pages. Wu AB, Li HP, Zhao CS, Liao YC, 2005. Comparative pathogenicity of Fusarium graminearum isolates from China revealed by wheat coleoptile and floret inoculations. Mycopathologia 160, 75-83. Yang L, Van Der Lee T, Yang X, Yu D, Waalwijk C, 2008. Fusarium populations on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology 98, 719-27. Zhang H, Van Der Lee T, Waalwijk C, Chen W, Xu J, Xu J, Zhang Y, Feng J, 2012. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS One 7, e31722. Zhang JB, Li HP, Dang FJ, Qu B, Xu YB, Zhao CS, Liao YC, 2007. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycological Research 111, 967-75.
摘要: 小麥赤黴病 (Fusarium head blight of Wheat﹔FHB) 是造成全球小麥重大經濟損失的病害之一,可分別由17種不同的Fusarium species所造成,並以Fusarium graminearum, Fusarium culmorum, Fusarium avenaceum, Fusarium poae, 及 Microdochium nivale為主要病原菌,其中又以F. graminearum所造成的FHB最普遍。目前經由多基因的分子演化分析,認為過去依據形態所鑑定的F. graminearum是一個複合種 (Fusarium graminearum sepcies complex﹔FGSC),因此進一步區分出16種不同的親緣種 (phylogenetic species)。台灣近年來部分地區小麥赤黴病發生嚴重,但過去對於小麥病害研究甚少,有關小麥赤黴病菌僅紀錄F. graminearum,對於台灣產小麥赤黴病菌所產生的真菌毒素之化學型 (chemotype)相關紀錄甚少。本篇研究主要係利用形態及分子生物學方法,針對195株台灣產小麥赤黴病菌的族群進行菌種鑑定及分析真菌毒素之化學型。研究發現造成台灣產小麥赤黴病之病原菌至少有3個屬於FGSC的親緣種,其中以Fusarium asiaticum (98.5%)占最多數,另外亦包含F. graminearum sensu stricto (0.5%)及Fusarium meridionale (0.5%)及未知親緣種(0.5%),且進一步發現F. asiaticum係由3種不同的族群所組成,分別為SCAR type 2 (76.1%)、SCAR type 3 (1.6%) 及SCAR type 4 (21.4%)。其中真菌毒素之化學型分析發現產生脫氧雪腐鐮孢烯醇 (deoxynivalenol﹔DON) 的菌株占多數 (83.1%),產生雪腐鐮孢烯醇 (nivalenol﹔NIV) 的菌株較少 (17.2% ),產生DON的菌株可依據所產生之DON結構再分成兩種化學型 (3-Ac-DON, 15-Ac-DON),其中產生15-Ac-DON的菌株佔多數 (98.1%),產生3-Ac-DON的菌株佔少數 (1.9%),更進一步利用HPLC化學分析,結果顯示利用分子生物學鑑定小麥赤黴病菌之真菌毒素化學型的方法具有可靠性,此外為了瞭解不同SCAR type與不同真菌毒素化學型是否有毒力差異,因而造成族群數量不同,進一步進行不同族群菌株的毒力測試,結果並未發現菌株族群間有毒力差異。本研究顯示造成台灣產小麥赤黴病之病原菌主要係F. asiaticum SCAR type 2引起,所產生的真菌毒素化學型為15-Ac-DON,未來若要進行小麥赤黴病之抗病育種,應以此病原菌族群作為主要防除對象進行植株選拔。
Fusarium head blight (FHB) is a very important wheat disease that causes great economic loss in the world. Seventeen different Fusarium species have been reported as the causal agents and Fusarium graminearum is the most common pathogen. According to the multiple locus genotyping, F. graminearum had been reported as a species complex. As of today, 16 phylogenetic species had been recongized. Recently, FHB severly occurred in some areas in Taiwan. Due to lack of studies on wheat diseases in Taiwan, F. graminearum was the only recorded pathogen and the information regarding the chemotype of mycotoxin was not well known. This study used morphology and molecular methods to identify the phylogenetic species and mycotoxin chemotypes of 195 FHB pathogens from various areas of Taiwan. The result showed that there were at least 3 FGSC phylogenetic species in Taiwan, including Fusarium asiaticum, F. graminearum sensu stricto, Fusarium meridionale and an unknown species. F. asiaticum was the most common species (98.5%), and could be further classified into 3 SCAR types. The most common SCAR type was SCAR type 2 (76.1%), others were SCAR type 3 (1.6%) and SCAR type 4 (21.4%). Three mycotoxin chemotypes were identified by the Tri gene molecular chemotyping. The most common mycotoxin chemotype was 15-Ac-DON (81.4%), others were NIV (17.2%) and 3- Ac-DON (1.57%). The mycotoxin chemotypes of some isolates were further determined by HPLC, indicating that the Tri gene molecular chemotyping was a reliable method for chemotyping. In additional, the virulence assays were carried out to address if pathogen virulence is associated with the uneven distributions of SCAR types or chemotypes in populations. However, the result showed no correlation between them. This study indicated that the major causal agent of FHB in Taiwan was F. asiaticum SCAR type 2 that produced 15-Ac-DON mycotoxin. The population of this fungus should be the target of FHB control.
URI: http://hdl.handle.net/11455/89321
文章公開時間: 2018-08-18
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.