Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89328
標題: 慣行與有機農田水稻紋枯病菌菌株特性之比較
Comparisons of Rhizoctonia solani AG-1 IA from conventional and organic farmlands
作者: Fu-Jeng Xiao
蕭輔政
關鍵字: 水稻紋枯病
Rhizoctonia solani AG-1 IA
形態多樣性
rice sheath blight
Rhizoctonia solani AG-1 IA
引用: 方則淳。2012。台灣水稻紋枯病菌Rhizoctonia solani AG1-IA特性分析比較。中興大學植物病理研究所第四十二屆碩士論文。 李新傳。1971。水稻紋枯病病株對水稻病原力之研究。高雄區農業改良場。 杜金池、張義璋。1978。Rhizoctonia solani K?hn 之菌絲融合?及其對水稻之病原性。邱人璋編。水稻病蟲害:生態學與流行學。263~285頁。 杜金池、張義璋、王仲文。1979。水稻紋枯病原菌之生態研究。科學發展月刊7(12):1208~1219。 杜金池、張義璋。1981。水稻紋枯病之生態及生物防治研究。臺南區農改場研究?報15:1~24。 杜金池、張義璋。1991。水稻紋枯病之生態及防治。農業試驗所特刊32:65~81。 吳龍溪。1971。稻紋枯病。p.46~76。邱人璋編。稻作病害。pp.371。農復會。 周而勛、曹菊香、楊媚、朱西儒。2002。我國南方六省(區)水稻紋枯病遺傳多樣性的研究。南京農業大學學報25(3):36~40。 林儀真。2003。雙股RNA因子與病毒顆粒在水稻紋枯病菌菌株中的存在及對其培養型態的影響。中興大學植物病理研究所第三十三屆碩士論文。 陳治官。2002。前言-作物簡介。植物保護圖鑑系列-水稻保護(上冊)。 p.2~8。行政院農業委員會動植物防疫檢疫局。 陳思豪。2007。台灣水稻紋枯病菌Rhizoctonia solani AG1-IA菌株之多樣性。中興大學植物病理研究所第三十七屆碩士論文。 張建華。2001。自水稻臺農67號誘變體篩選抗紋枯病品系。中興大學植物病理研究所第三十一屆碩士論文。 張德前、劉達休。1984。低容量莖間施藥法防治水稻紋枯病與褐飛蝨之效果。臺中 區農業改良場研究彙報9:22~28。 張義璋。1985。影響稻紋枯病菌生長及菌核形成之因子。中華農業研究 34:454~463。 張義璋。2002。紋枯病。植物保護圖鑑系列-水稻保護(下冊)。p.299~310。行政院農業委員會動植物防疫檢疫局。 游俊明。2002。水稻疑似紋枯病。植物保護圖鑑系列-水稻保護(下冊)。p.279~289。行政院農業委員會動植物防疫檢疫局。 楊相哲。2006。台灣地區水稻紋病菌株差異性之研究。中興大學植物病理研究所第三十四屆碩士論文。 費雯綺、王喻其。2007。植物保護手冊。行政院農業委員會藥物毒物試驗所。臺中。884頁。 Attoui, H., Billoir, F., Cantaloube, J. F., Biagini, P., de Micco, P., & de Lamballerie, X. 2000. Strategies for the sequence determination of viral dsRNA genomes. Journal of Virological Methods, 89(1), 147–158. Aravin, A. A., Naumova, N. M., Tulin, A. V., Vagin, V. V., Rozovsky, Y. M., & Gvozdev, V. A. 2001. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Current Biology, 11(13), 1017–1027. Batten, J. S., Scholthof, K.-B. G., Miller, M. E., & Martyn, R. D. 2000. cDNA probes for detection of specific dsRNAs from the fungal pathogen, Monosporascus cannonballus. Journal of Virological Methods, 84(2), 209–215. Bernardes-de-Assis, J., Storari, M., Zala, M., Wang, W., Jiang, D., ShiDong, L., … Ceresini, P. C. 2009. Genetic structure of populations of the rice-infecting pathogen Rhizoctonia solani AG-1 IA from China. Phytopathology, 99(9), 1090–1099. Bryner, S. F., & Rigling, D. 2011. Temperature?Dependent Genotype?by?Genotype Interaction between a Pathogenic Fungus and Its Hyperparasitic Virus. The American Naturalist, 177(1), 65–74. Caplen, N. J., Fleenor, J., Fire, A., & Morgan, R. A. 2000. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene, 252(1), 95–105. Chamoun, R., & Jabaji, S. 2011. Expression of genes of Rhizoctonia solani and the biocontrol Stachybotrys elegans during mycoparasitism of hyphae and sclerotia. Mycologia, 103(3), 483–493. Charlton, N. D., Carbone, I., Tavantzis, S. M., & Cubeta, M. A. 2008. Phylogenetic relatedness of the M2 double-stranded RNA in Rhizoctonia fungi. Mycologia, 100(4), 555–564. Chiba, S., Salaipeth, L., Lin, Y.-H., Sasaki, A., Kanematsu, S., & Suzuki, N. 2009. A Novel Bipartite Double-Stranded RNA Mycovirus from the White Root Rot Fungus Rosellinia necatrix: Molecular and Biological Characterization, Taxonomic Considerations, and Potential for Biological Control. Journal of Virology, 83(24), 12801–12812. Ciampi, M. B., Gale, L. R., Lemos, E. G., & Ceresini, P. C. 2009. Distinctively variable sequence-based nuclear DNA markers for multilocus phylogeography of the soybean-and rice-infecting fungal pathogen Rhizoctonia solani AG-1 IA. Genetics and Molecular Biology, 32(4), 840–846. Feldman, T. S., Morsy, M. R., & Roossinck, M. J. 2012. Are communities of microbial symbionts more diverse than communities of macrobial hosts? Fungal Biology, 116(4), 465–477. G?ker, M., Scheuner, C., Klenk, H.-P., Stielow, J. B., & Menzel, W. 2011. Codivergence of mycoviruses with their hosts. PloS One, 6(7), e22252. Jia, Y., Correa-Victoria, F., McClung, A., Zhu, L., Liu, G., Wamishe, Y., … Rutger, J. N. 2007. Rapid determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Disease, 91(5), 485–489. Kang, J.-G., Wu, J.-C., Bruenn, J. A., & Park, C.-M. 2001. The H1 double-stranded RNA genome of Ustilago maydis virus-H1 encodes a polyprotein that contains structural motifs for capsid polypeptide, papain-like protease, and RNA-dependent RNA polymerase. Virus Research, 76(2), 183–189. Kondo, H., Kanematsu, S., & Suzuki, N. 2013. Viruses of the White Root Rot Fungus, Rosellinia necatrix. In Advances in Virus Research (Vol. 86, pp. 177–214). Elsevier. Lee, K.-M., Yu, J., Son, M., Lee, Y.-W., & Kim, K.-H. 2011. Transmission of Fusarium boothii Mycovirus via Protoplast Fusion Causes Hypovirulence in Other Phytopathogenic Fungi. PLoS ONE, 6(6), e21629. Morsy, M. R., Oswald, J., He, J., Tang, Y., & Roossinck, M. J. 2010. Teasing apart a three-way symbiosis: Transcriptome analyses of Curvularia protuberata in response to viral infection and heat stress. Biochemical and Biophysical Research Communications, 401(2), 225–230. Paquin, B., Laforest, M.-J., Forget, L., Roewer, I., Wang, Z., Longcore, J., & Lang, B. F. 1997. The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Current Genetics, 31(5), 380–395. Park, D.-S., Sayler, R. J., Hong, Y.-G., Nam, M.-H., & Yang, Y. 2008. A method for inoculation and evaluation of rice sheath blight disease. Plant Disease, 92(1), 25–29. Pearson, M. N., Beever, R. E., Boine, B., & Arthur, K. 2009. Mycoviruses of filamentous fungi and their relevance to plant pathology. Molecular Plant Pathology, 10(1), 115–128. Preisig, O., Moleleki, N., Smit, W. A., Wingfield, B. D., & Wingfield, M. J. 2000. A novel RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua. Journal of General Virology, 81(12), 3107–3114. Qu, P., Yamashita, K., Toda, T., Priyatmojo, A., Kubota, M., & Hyakumachi, M. 2008. Heterokaryon formation in Thanatephorus cucumeris (Rhizoctonia solani) AG-1 IC. Mycological Research, 112(9), 1088–1100. Rong, R., Rao, S., Scott, S. W., & Tainter, F. H. 2001. Common multiple dsRNAs are present in populations of the fungus Discula destructiva originating from widely separated geographic locations. Current Microbiology, 42(2), 144–148. Singh, A., Rohilla, R., Singh, U. S., Savary, S., Willocquet, L., & Duveiller, E. 2002. An improved inoculation technique for sheath blight of rice caused by Rhizoctonia solani. Canadian Journal of Plant Pathology, 24(1), 65–68. Vainio, E. J., Hakanp??, J., Dai, Y.-C., Hansen, E., Korhonen, K., & Hantula, J. 2011. Species of Heterobasidion host a diverse pool of partitiviruses with global distribution and interspecies transmission. Fungal Biology, 115(12), 1234–1243. Vainio, E. J., Korhonen, K., Tuomivirta, T. T., & Hantula, J. 2010. A novel putative partitivirus of the saprotrophic fungus Heterobasidion ecrustosum infects pathogenic species of the Heterobasidion annosum complex. Fungal Biology, 114(11-12), 955–965. Zheng, A., Lin, R., Zhang, D., Qin, P., Xu, L., Ai, P., … Li, P. 2013. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nature Communications, 4, 1424
摘要: 水稻在西元 2011 年全世界產量為 6.18 億公噸,為世界上主要糧食之一。而水稻紋枯病為水稻重要病害之一,於世界各地普遍發生,其病原菌為立枯絲核菌 (Rhizoctonia solani AG 1-IA),為絲核菌屬 (Rhizoctonia spp.),有性世代為 Thanatephorus cucumeris。水稻紋枯病菌田間發病溫度在 24℃~32℃ 之間,一次感染源主要是以漂浮的菌核,於 24℃~28℃ 下病斑擴展速度最快,而台灣仍無有效之水稻抗病品種,主要以藥物進行防治。Tavantzis 等人已發現在立枯絲核菌融合群 AG-3 中所分離出的部分 dsRNA 與立枯絲核菌的毒力有相關性。此外,真菌表現型之改變包括生長型態、二次代謝合成及毒力等,也被認為會受 dsRNA 因子所影響。從全台各地所收集之水稻紋枯病菌分離株,其在馬鈴薯葡萄糖培養基上呈現不同之菌落型態。而有機栽培田與慣行栽培田之田間水稻紋枯病調查,發現臺梗 16 號在有機栽培下,發病情形也較其它品種輕微,代表臺梗 16 號適合有機栽培,能使其產量與慣行栽培相近但品質更好。經生長形態試驗比較,其中發現特定菌株 Rsl M-3 在 16℃~24℃ 下生長較緩慢,且色素與菌核形成皆減少,但在 30℃ 下反而菌絲生長速度提高之現象,代表能適應熱逆境。而另一個菌株 Rsl B2-2 也出現類似情形,甚至在 30℃ 下出現菌絲生長速度提高之現象,而此一菌株來自慣行栽培所分離得到,其菌株特性也出現生長緩慢以及色素與菌核減少,可能也帶有特定之 dsRNA片段。
Rice sheath blight disease, caused by Rhizoctonia solani k?hn AG-1 IA (teleomorph: Thanatephorus cucumeris (Frank) Donk), is one of the most widespread disease in rice. R. solani AG-1 IA causes leaf blight on soybean and rice.The dissemination of the disease is by the sclerotia floating on water as the first infection source. At the onset of the rice growing season, in response to favorable humidity and temperatures (24 to 32℃), fungal growth is attracted to planted host crops. In 1962, Hollings noted that double-stranded RNA in diseased Agaricus Bisporus caused LA Fance disease. This was the first report of mycovirus. Tavantzis finded some dsRNA isolatied from R. solani AG-3 were associated with its virulence. Morphology and metabolism changes of fungi phenotype are also effected by dsRNA. Marquez isolated fungal endophyte with dsRNA mycovirus from panic grass growing in geothermal soils that can reach 65℃. CThTV-infected C. protubeberata confers heat tolerance to other hosts in the three-way symbiosis. dsRNA elements in R. solani isolates collected form around Taiwan show highly frequentcy and are diversity. R. solani isolate with 2.0k dsRNA showed low growth rate , less fragments and sclerotia at 24℃~28℃, but showed high grow rate at 30℃. It means this isolate with 2.0k dsRNA get heat tolerance. The presence of dsRNA that causes change in fungal morphology and heat tolerance. In the future, we can research the changes of presented proteins to know if it can effect the virulence of R. solani AG-1 IA
URI: http://hdl.handle.net/11455/89328
文章公開時間: 2015-08-31
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.