請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/89329
標題: 應用鏈黴菌 Streptomyces spp. 促進 植物生長及根系調節物質之探討
Using Streptomyces spp. for promoting plant growth and investigating their root growth regulators
作者: Kuan- I Tu
杜冠毅
關鍵字: 鏈黴菌
促進植物生長
根系生長
調節物質
Streptomyces
promoting plant growth
root growth regulators
引用: 石信德。2003。鏈黴菌PMS-702防治作物病害的功效與其抑菌主要代謝物治黴色基素之鑑定。國立中興大學植物病理學系,博士論文。146 pp。 李明達。1995。應用幾丁質分解性放射線菌防治南方根瘤線蟲。國立中興大學植物病理學系,碩士論文。74 pp。 林俊義。2005。永續農業之理念與發展策略。合理化施肥專刊,農業試驗所特刊121期,1-14頁。 柯欣志。2000。營養供給對放線菌Streptomyces saraceticus SS31號菌株抗生物質與幾丁質分解酵素產生之影響。國立中興大學植物病理學系,碩士論文。90 pp。 張治國、楊秋忠、楊耀祥。2001。菌根菌及溶磷菌對蓮霧組培幼苗生長之影響。 興大園藝。26 (4): 1-16。 陳立夫。1995。腐植酸中類似荷爾蒙成分及其相關特性之研究。國立中興大學土壤環境科學系,博士論文。115 pp。 陳欣孝。1998。放線菌Streptomyces saraceticus SS31號菌株所產生抗生物質理化與生物特性之研究。國立中興大學植物病理學系,碩士論文。84 pp。 陳姿翰。2006。 Streptomyces saraceticus肥料製劑對'巨峰'葡萄植株生長及果實品質之影響。國立中興大學園藝學系,碩士論文。81 pp。 陳雲成。2008。應用鏈黴菌Streptomyces spp.防治植物真菌性病害與植物寄生性線蟲病害。國立中興大學植物病理學系。碩士論文。70 pp 。 楊秋忠。1989。 土壤與肥料。農世股份有限公司出版。台中。290 pp。 楊秋忠。1995。微生物肥料的應用。花蓮區農業專訊。 12: 7-8 。 蔡東纂。1998。植物寄生性線蟲之生物防治。國立台灣大學植物病蟲害學研究所,博士論文。102 pp。 Barazani, O., and Friedman, J. 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? Journal of Chemical Ecology. 25(10): 2397–2406. Barona- Gomez, F., Lautru, S., Francou, F.X., Leblond, P., Pernodet, J.L., and Challis, G.L. 2006. Multiple biosynthetic and uptake systems mediate siderophore- dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology. 152(11): 3355–3366. Brown, M. E. 1972. Plant growth substances produced by microorganisms of soil and rhizosphere. Journal of Applied Bacteriology. 35(3): 443-451. Cook, R. J. 2000. Advances in plant health management in the 20th century. Annual Review of Phytopathology. 38: 95-116. Costacurta, A., and Vanderleyden, J. 1995. Synthesis of phytohormones by plant-associated bacteria. Critical Reviews in Microbiology. 21(1): 1–18. Dobbelaere, S., Vanderleyden, J., and Okon, Y. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences. 22(2): 107-149. Doumbou, C.L., Salove, M. K. H., Crawford, D.L., and Beaulieu, C. 2001. Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection. 82(3): 85–102. Dunlap, J. R., and Robacker, K. M. 1988. Nutrient salts promote light-induced degradation of indole-3-acetic acid in tissue culture. Plant Physiology. 88(2): 379-382. Ehrlich, H. L. 1996. How microbes influence mineral growth and dissolution. Chemical Geology. 132: 5–9. El-Tarabily, K. A. 2008. Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase–producing Streptomycete actinomycetes. Plant and Soil. 308(1): 161−174. Frankenberger, W. T. Jr., and Arshad, M. 1995. Phytohormones in Soils: Microbial Production and Function. Marcel Dekker, New York, 505 pp. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Cnadian Journal of Microbio. 41(2): 109-117. Glickmann, E., and Dessaux, Y. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology. 61(2): 793–796. Gopalakrishnan, S., Humayun, P., Vadlamudi, S., Vijayabharathi, R., Bhimineni, R. K., and Rupela, O. 2012. Plant growth-promoting traits of Streptomyces with biocontrol potential isolated from herbal vermicompost. Biocontrol Science and Technology. 22(10): 1199−1210. Hasegawa, S., Meguro, A., Shimizu, M., Nishimura, T., and Kunoh, H. 2006. Endophytic actinomycetes and their interactions with host plants. Actinomycetologica. 20(2): 72–81. Hayashida, S., Choi, M. Y., Nanri, N., and Miyaguchi, M. 1988. Production of potato common scab-antagonistic biofertilizer from swine feces with Streptomyces albidoflavus. Agricultural and Biological Chemistry. 52(10): 2397-2402. Imbert, M., Bechet, M., and Blondeau, R. 1995. Comparison of the main siderophores produced by some species of Streptomyces. Current Microbiology. 31(2): 129–133. Jeounghyun, R., Munusamy, M., Selvaraj, P., Woojong, Y., Pandiyam, I., Kyounga, K., Rangasamy, A., Jongchul, Y., Kim, K. H., and Tongmin, S. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. Journal of Microbiology and Biotechnology. 16(10): 1622–1628. Jarvis, B. C., Shannon, P. R. M., and Yasmin, S. 1983. Involvement of polyamines with adventitious root development in stem cuttings of mung bean. Plant and Cell physical. 24(4): 677-683. Jog, R., Nareshkumar, G., and Rajkumar, S. 2012. Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. Journal of Applied Microbiology. 113(5): 1154-1164. Katiyar, V., and Goel, R. 2004. Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regulation. 42(3): 239–244. Khamna, S., Yokota, A., and Lumyong, S. 2009. Actinomycetes isolated from medicinal plant rhizosphere soil: diversity and screening of antifungal compound, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology. 25(4): 649–655. Khamna, S., Yokota, A., Peberdy, J. F., and Lumyong, S. 2010. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsian Journal of BioSciences. 4: 23–32. Kimura, Y., Fujioka, H., Nakajima, H., Hamasaki, T., and Nakashima, R. 1993. BSF-A, a new plant growth regulator produced by the fungus Botrytis squamosa. Bioscience, Biotechnology, and Biochemistry. 57(9): 1584-1585. Kusano, M., Sotoma, G., Koshino, H. Uzawa, J., Chijimatsu, M., Fujioka, S., Kawano, T., and Kimura, Y. 1998. Brevicompanines A and B: new plant growth regulators produced by the fungus, Penicillium brevicompactum. Journal of the Chemical Society, Perkin Transactions 1. 17: 2823 – 2826. Legault, G.S., Lerat, S., Nicolas, P., and Beaulieu, C. 2011. Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings. Phytopathology. 101(9): 1045–1051. Leong, J. 1986. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annual Review of Phytopathology. 24: 187–209. Leveau, J. H. J., and Lindow, S. E. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Applied and Environmental Microbiology. 71(5): 2365–2371. Li-Hua, Xu., Yong-Qian, Tiang., Yun-Feng, Zhang., Li-Xing, Zhao., and Cheng-Lin, Jiang. 1998. Streptomyces thermogriseus a new species of the genus Streptomyces from soil, lake and hot spring. International Journal of Systematic Bacteriology. 48: 1087-1093. Liu, X., Bolla, K., Ashforth, E. J., Zhuo, Y., Gao, H., Huang, P., Stanley, S.A., Hung, D. T., and Zhang, L. 2012. Systematics-guided bioprospecting for bioactive microbial natural products. Antonie van Leeuwenhoek. 101: 55–66. Lynch, J. P. 2007. Roots of the second green revolution. Australian Journal of Botany 55(5): 493–512. Mansour, F. A., Aldesuquy, H. S., Hamedo H. A. 1994. Studies on plant growth regulators and enzyme production by some bacteria. Qatar University Science Journal. 14(2): 281–288. Manulis, S., Shafrir, H., Epstein, E., Lichter, A., and Barash, I. 1994. Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces sp. Microbiology. 140: 1045–1050. Matsukawa, E., Nakagawa, Y., Iimura, Y., and Hayakawa, M. 2007. Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp. Actinomycetologica. 21(1): 32–39. Miyadoh, S. 1997. Atlas of Actinomycetes. The Society for Actinomycetes. Japan. Asakura publishing Co., Ltd. 223pp. Mokni-Tlili, S., Jaoua, L., Murano, F., Jedidi, N., and Hassen, A. 2009. Study of the effects of urban organic residues on the distribution of culturable actinomycetes in a Tunisian agricultural soil. Waste Management & Research. 27: 224-232. Nassar, A. H., EI-Tarabily, K. A., and Sivasithamparam, K. 2003. Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus. Plant growth regulation. 40: 97-106. Palaniyandi, S. A., Yang, S.H., Zhang, L., and Suh, J. W. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology. 97(22): 9621–9636. Patten, C.L., and Glick, B.R. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology. 68(8): 3795–3801. Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya. 17: 362–370. Rozycki, H., and Strzelczyk, E. 1986. Organic acids production by Streptomyces spp. isolated from soil, rhizosphere and mycorrhizosphere of pine (Pinus sylvestris L.). Plant and Soil. 96: 337–345. Rungin, S., Indananda, C., Suttiviriya, P., Kruasuwan, W., Jaemsaeng, R., and Thamchaipenet, A. 2012. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie van Leeuwenhoek. 102(3): 463–472. Sadeghi, A., Karimi, E., Dahaji, P. A, Javid, M.G., Dalvand, Y., and Askari, H. 2012. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology and Biotechnology. 28(4): 1503–1509. Schwyn, B., and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry. 160(1): 47–56. Selitrennikoff, C. P. 2001. Antifungal proteins. Applied and Environmental Microbiology. 67(7): 2883-2894. Somers, E., Ptacek, D., Gysegom, P., Srinivasan, M., and Vanderleyden, J. 2005. Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Applied and Environmental Microbiology. 71(4): 1803–1810. Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews. 31(4): 425–448. Tang , W., and Newton, R. J. 2005. Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill) plantlets. Plant Cell Reports. 24(10): 581–589. Tilak, K. V. B. R., Ranganayaki, N., Pal, K. K., De, R., Saxena, A. K., Nautiyal, C. S., Mittal, S., Tripathi, A. K., and Johri, B. N. 2005. Diversity of plant growth and soil health supporting bacteria. Current Science. 89(1): 136–150. Tokala, R. K., Strap, J. L., Jung, C. M., Crawford, D. L., Salove, M. H., Deobald, L. A., Bailey, J. F., and Morra, M. J. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Applied and Environmental Microbiology. 68(5):2161–2171. Tonon, G., Kevers, C., and Gaspar, T. 2001. Changes in polyamines, auxins and peroxidase activity during in vitro rooting of Fraxinus angustifolia shoot: an auxin-independent rooting model. Tree Physiology. 21: 655-633. Verma, V. C., Singh, S. K., Prakash, S. 2011. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. Journal of Basic Microbiology. 51: 550-556. Williams, S. T., Lanning, S., and Wellington, E. M. H. 1984. Ecology of actinomycetes. Pages 481-528 in: The biology of Actinomycetes. Goodfellow, M., Mordarski, M., and Williams, S. T. eds. Academic Press Inc., London, 544pp. Wilson, P. J., and Staden, J. V. 1990. Rhizocaline, rooting co-factors, and the concept of promoters and inhibitors of adventitious rooting – a review. Annals of Botany. 66: 479–490. Yang, W., Xu, Q., Liu, H. X., Wang, Y. P., Wang, Y. M., Yang, H. T., and Guo, J. H. 2012. Evaluation of biological control agents against Ralstonia wilt on ginger. Biological Control. 62: 144-151.
摘要: 本研究測試4株由田間分離而來具有防治植物病原真菌和植物寄生線蟲能力之放線菌,其產生IAA和多胺類物質、嵌鐵物質、胞外酵素 (extracellular enzymes) 能力與促進植物生長的效果。 結果顯示, 4株菌株培養於含有色胺酸 (tryptophan) 之LB培養基皆可產生IAA,但其中S. saraceticus 31菌株在培養第三天時,測得IAA濃度68.3 mg/L 為所有菌株中產量最高的。以decarboxylase agar medium測試多胺類物質的產生,所有的菌於培養第二天時,即可產生紅色暈環,仍以SS31暈環半徑最大,顯示其分泌多胺類物質能力較佳。此外S. saraceticus 31培養在Chrome azurol S (CAS) 培養基上第二天,可觀察到橘色暈環,顯示其亦具有產生嵌鐵物質能力。經由不同培養基測試胞外酵素產生能力,S. saraceticus 31具有最好的澱粉、蛋白質、纖維和幾丁質分解能力。在溫室試驗中,以放線菌 S. saraceticus 31孢子懸浮液和馬鈴薯葡萄糖煎汁 (PDB) 培養液澆灌胡瓜幼苗,結果發現此兩種處理的根系長度和重量皆顯著較對照組增加。將放線菌S. saraceticus 31以九種農業常使用有機添加物與砂糖各1 % (w/v) 進行培養,結果顯示SS31在黃豆砂糖培養基中培養的發酵液促進根系生長能力最好。其中稀釋500倍的黃豆砂糖處理,相較於其它所有處理的發酵液,仍可促進根系的延長及生長。將黃豆砂糖培養液搖瓶培養6天,稀釋500倍的發酵液促進胡瓜根系生長的能力最好,此處理的根系長度及重量相較對照組增加17.8 % 以及21.9 %。 進一步透過S. saraceticus 31菌絲層所收集的代謝液,觀察S. saraceticus 31代謝產物對胡瓜根系生長的影響;將菌絲層代謝液稀釋後處理胡瓜種子和發芽7天大的胡瓜幼苗切根 (cutting of cucumber seedlings),結果顯示菌絲層代謝液可明顯促進胡瓜胚根 (Primary roots) 延長以及不定根 (adventitious roots) 產生,整體根系鮮重增加。本研究結果顯示,4株菌株中,以S. saraceticus 31具有最佳促進植物根系發育及生長的能力,加上它在前人研究中已知可防治馬鈴薯晚疫病菌 (Phytophthora infestans Mont de Bary, pif 65-1) 、番茄晚疫病菌 (Phytophthora infestans Mont de Bary, pif 165-1) 、洋香瓜黑點病菌 (Monosporascus cannonballus Pollacha and Uecker, MC-1) 、胡瓜萎凋病菌 (Fusarium oxysporium f. sp. cucumerinum , F. o. c. 100) 、南方根瘤線蟲 (Meloidogyne incognita) 以及南方根腐線蟲 (Pratylenchus coffeae) 所造成的病害,故可將之開發作為多功能性生物製劑 (multi-functional bioagent)。經分析結果顯示,菌絲層代謝液中並未含有IAA的成分,暗示S. saraceticus 31具有產生非荷爾蒙IAA的植物根系生長調節物質 (root growth regulators),所以SS31菌株促進植物生長的物質可能為新物質,可再進一步研究它的成份。
Four Streptomyces spp. isolated from the crop rhizosphere were able to inhibit plant pathogenic fungi and plant parasitic nematodes. These organisms were tested for their ability of producing IAA, polyamines, siderophores and extracellular enzymes, and the ability to promote the root growth. The results showed that Streptomyces saraceticus 31 was able to produce 68.3 mg/L of IAA after culturing in LB containing tryptophan at the 3rd day. SS31 also produced the largest amounts of polyamines, siderophores and hydrolytic ezymes (amylase, protease, cellulase, chitinase). In the greenhouse experiment, the treatments with SS31spore suspension and SS31 PDB broth cultural 100x dilution force had the best rooting rate. For the application in the field, the SS31 cultured in media containing nine organic substances were tested for their ability to promote cucumber plant growth. The SS31 cultured in soybean-sucrose broth for 6 days and diluted 500 fold had the best root growth promoting results by longer root length, and the root weight were increased up to 17.8 % and 21.9 %. Treatments that plants were treated with the water-soluble diffusate released from the mycelial mat of Streptomyces sp. 31 showed more adventitious roots emerging from the stem bases of cucumber cuttings. SS31 had been reported to have potential of controlling fungal pathogens; such as Phytophthora infestans, Fusarium oxysporium f. sp. cucumerinum and Monosporascus cannonballus, and plant parasitic nematodes like Meloidogyne incognita and Pratylenchus coffeae. Based on these findings Streptomyces saraceticus 31 is suitable to be applied as a multifunctional bioagent. The hormone-like effect was observed both in soybean-sucrose cultural broth and water-soluble diffusate experiments, but via both colorimetric method and GC/MS could not detect IAA in the SS31 soybean-sucrose cultural broth and the water-soluble mycelium diffusate. It suggested that Streptomyces saraceticus 31 might produce some novel plant hormones. Identification of these substances are needed in the future.
URI: http://hdl.handle.net/11455/89329
文章公開時間: 2017-02-06
顯示於類別:植物病理學系

文件中的檔案:
檔案 描述 大小格式 
nchu-103-7100035112-1.pdf1.41 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。