Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89332
標題: 新德里番茄捲葉病毒寄主適應特性關鍵因子之研究
Characterization of the critical factors for host adaptation of Tomato leaf curl New Delhi virus
作者: Yao-Wei Kuo
郭曜維
關鍵字: 新德里番茄捲葉病毒
寄主適應性
番茄
移動蛋白
Tomato leaf curl New Delhi virus
host adaptability
tomato
movement protein
引用: 陳信宏。1996。銀葉粉蝨傳播番茄捲葉病毒之研究。中興大學昆蟲系。碩士論文。台中。 梁耀光、張佐琦、柯南靖。1990。台灣 geminiviruses 之發生及診斷。植保會刊 32: 136-144。台北。 張賀雄。2010。建立番茄斑萎病毒屬西瓜銀斑病毒逆向遺傳系統暨新德里番茄捲   葉病毒東方甜瓜分離株機械接種特性、病原性及其對番茄感染決定因子之研   究。中興大學植物病理學系。博士論文。台中。 彭瑞菊、鄭安秀。2002。番茄捲葉病毒之偵測。台南區農業專訊 42: 18-20。台南。 彭瑞菊、鄭安秀。2003。台南區番茄病毒病的種類及分佈。台南區農業專訊 44: 15-18。台南。 詹欽翔。2011。新德里番茄捲葉病毒機械傳播特性關鍵因子之研究。中興大學農藝學系。碩士論文。台中。 簡瑞哲。2007。可機械傳播感染東方型甜瓜新德里捲葉病毒之鑑定及特性。 中興大學植物病理學系。碩士論文。台中。 Arguello-Astorga, G., Herrera-Estrella, L., and Rivera-Bustamante, R. 1994. Experimental and theoretical definition of geminivirus origin of replication. Plant Mol. Biol. 26: 553-556. Boulton, M.I., King, D.I., Markham, P.G., Pinner, M.S., and Davies, J.W. 1991a. Host range and symptoms are determined by specific domains of the Maize streak virus genome. Virology 181: 312-318. Boulton, M.I., King, D.I., Donson, j., and Davies, J.W. 1991b. Point substitutions in a promoter-like region and the Vl gene affect the host range and symptoms of Maize streak virus. Virology 183: 114-121. Briddon, R.W., and Markham, P.G. 2000. Cotton leaf curl virus disease. Virus Res. 71: 151-159. Briddon, R.W., Heydarnejad, J., Khosrowfar, F., Massumi, H., Martin, D.P., and Varsani, A. 2010. Turnip curly top virus, a highly divergent geminivirus infecting turnip in Iran. Virus Res. 152: 169-175. Brown, J.K., and Bird, J. 1992. Whitefly-transmitted geminiviruses and associated disorders in the Americas and the Caribbean Basin. Plant Dis. 79: 220-225. Chang, L.-S., Lee, Y.-S., Su, H.-J., and Hung, T.-H. 2003. First report of Papaya leaf curl virus infecting papaya plant in Taiwan. Plant Dis. 87: 204. Chang, H.-H., Ku, H.-M., Tsai, W.-S., Chen, R.-C., and Jan, F.-J. 2010. Identification and characterization of a mechanical transmissible begomovirus causing leaf curl on oriental melon. Eur. J. Plant Pathol. 127: 219-228. Chen, T.-C., Lu, Y.-Y., Cheng, Y.-H., Chang, C.-A., and Yeh, S.-D. 2008. Melon yellow spot virus in watermelon: a first record from Taiwan. Plant Pathol. 57: 765. Costa, A.S. 1965. Three whitefly-transmitted virus diseases of beans in Sao Paulo, Brazil. FAO Plant Prot. Bull. 13: 121-130. Cui, X., Tao, X., Xie, Y., Fauquet, C.M., and Zhou, X. 2004. A DNA associated with Tomato yellow leaf curl China virus is required for symptom induction. J. Virol. 78: 13966-13974. Cui, X., Li, G., Wang, D., Hu, D., and Zhou, X. 2005. A begomovirus DNA? encoded protein binds DNA, fuctional as asuppressor of RNA silencing, and targets the cell nucleus. J. Virol. 79: 10764-10775. Dawson, W.O., and Hilf, M.E. 1992. Host range determinants of plant viruses. Annu. Rev. Plant Physiol. 43: 527-555. Desbize, C., David, C., Mettouchi, A., Laufs, J., and Gronenborn, R. 1995. Rep protein of Tomato yellow leaf curl geminivirus has an ATPase activity required for viral DNA replication. Proc. Natl. Acad. Sci. U. S. A. 92: 5640-5644. Dong, X., van Wezel, R., Stanley, J., and Hong, Y. 2003. Fuctional characterization of the nuclear localization signal for a suppressor of posttranscritional gene silencing. J. Virol. 77: 7026-7033. Fauquet, C.M., Briddon, R.W., Brown, J.K., Moriones, E., Stanley, J., Zerbini, M., and Zhou, X. 2008. Geminivirus strain demarcation and nomenclature. Arch. Virol. 153: 783-821. Fondong, V.N., Reddy, R.V.C., Lu, C., Hanloua, B., and Felton, C. 2007. The consensus N-myristoylation motif of a geminivirus AC4 protein is required for membrane binding and pathogenicity. Mol. Plant-Microbe Interact. 20: 380-391. Fondong, V.N. 2013. Geminivirus protein structure and function. Mol. Plant Pathol. 14: 635-649. Fontes, E.P.B., Eagle, P.A., Sipe, P.S., Luckow, V.A., and Hanley-Bowdoin, L. 1994. Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J. Biol. Chem. 269: 8459-8465. Fulton, T.M. 1995. Micorprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209. Garc?a-Arenal, F., Fraile, A., and Malpica, J.M. 2001, Variability and genetic structure of plant virus populations. Annu. Rev. Phytopathol. 39: 157-186. Gharouni, K.S, Heydarnejad, J., Zakiaghl, M., Mehrvar, M., Kraberger, S., and Varsani, A. 2013. Diversity of beet curly top Iran virus isolated from different hosts in Iran. Virus Genes 46: 571-575. Gillette, W.K., Meade, T.J., Jeffrey, J.L., and Petty, I.T.D., 1998. Genetic determinants of host-specificity in bipartite geminivirus DNA A components. Virology 251: 361-369. Gopal, P., Kumar, P.P., Sinilal, B., Jose, J., Yadunandam, A., and Usha, R. 2007. Differential roles of C4 and C1 in mediating suppresssion of posttranscriptional gene silencing: evidence for transactivation by the C2 of Bhendi yellow vien mosaic virus, a monopartite begomovirus. Virus Res. 123: 9-18. Haley, A., Richardson, K., Zhan, X., and Morris, B. 1995. Mutagenesis of the BC1 and BV1 genes of African cassava mosaic virus identifies conserved amino acids that are essential for spread. J. Gen. Virol. 76: 1291-1298. Hernandez-Zepeda, C., Varsani, A., and Brown, J.K. 2013. Intergeneric recombination between a new, spinach-infecting curtovirus and a new geminivirus belonging to the genus Becurtovirus: ?rst new world exemplar. Arch. Virol. 158: 2245-2254. Heydarnejad, J., Keyvani, N., Razavinejad, S., Massumi, H., and Varsani, A. 2013. Fulfilling Koch's postulates for beet curly top Iran virus and proposal for consideration of new genus in the family Geminiviridae. Arch. Virol. 158: 435-443. Hou, Y.M. and Gilbertson, R.L. 1996. Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J. Virol. 70: 5430-5436. Hou,Y.M., Paplomatas, E.J., and Gilbertson, R.L. 1998. Host adaptation and replication properties of two bipartite geminiviruses and their pseud- orecombinants. Mol. Plant-Microbe Interact. 11: 208-217. Hou,Y. M., Sanders, R., Ursin, V.M., and Gilbertson, R.L.2000. Transgenic plants expressing geminivirus movement proteins: abnormal phenotypes and delayed infection by tomato mottle virus in transgenic tomatoes expressing the bean dwarf mosaic virus BV1 or BC1 Proteins. Mol. Plant-Micro Interact. 13: 297-308. Hussain, M., Mansoor, S., Iram, S., Zafar., Y., and Briddon, R.W. 2004. First report of Tomato leaf curl New Delhi virus affecting chili pepper in Pakistan. Plant Pathol. 53: 794. Ingham, D.J. and Lazarowitz, S.G. 1993. A single missense mutation in the BV1 movement protein alters the host range of the Squash leaf curl geminivirus. Virology 196: 694-702. Ingham, D.J., Pascal, E., and Lazarowitz, S.G. 1995. Both bipartite geminivirus movement proteins define viral host range, but only BC1 determines viral pathogenicity. Virology 207: 191-204. Jeske, H. 2009. Geminiviruses. Curr. Top. Microbiol. Immunol. 331: 185-226. Johnson, J. 1922. The relation of air temperature to the mosaic disease of potatoes and other plants. Phytopathology 12: 438-440 King, A.M.Q., Lefkowitz, E., Adams, M.J., Carstens, E.B. 2012. Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier Academic Press. New York, USA. 1327 pp. Kon, T., Sharma, P., and Ikegami, M. 2007. Suppressor of RNA silencing encoding by the monopartite Tomato leaf curl Java begomovirus. Arch. Virol. 152: 1273-1282. Krenz, B., Windeisen, V., Wege, C., Jeske, H., and Kleinow, T. 2010. A plastid- targeted heat shock cognate 70 kDa protein interacts with the Abutilon mosaic virus movement protein. Virology 401: 6-17. Laufs, J., Jupin, I., David, C., Schumacher, S., Nitschke, F.H., and Gronenbom, B. 1995. Geminivirus replication: Genetic and biochemical characterization of Rep protein function, a review. Biochimie 77: 765-73. Laufs, J., Traut, W., Heyraud, F., Matzeit, V., Roger, S., Schell, J., and Gronenborn, B. 1995. In vitro cleavage and joining at the viral origion of replication by the replication initiator protein of Tomato yellow leaf curl virus. Proc. Natl. Acad. Sci. U. S. A. 92: 3879-3883. Lazarowitz, S.G. 1987. The molecular characterization of geminiviruses. Plant Mol. Biol. 4: 117-192. Lazarowitz, S.G. and Beachy, R.N. 1999. Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11: 535-548. Lewis, J.D., and Lazarowitz, S.G. 2010. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc. Natl. Acad. Sci. U.S.A. 107: 2491-2496. Lin, C.Y., Ku, H.M., Tan, C.W., Yeh, S.D., and Jan, F. J. 2011. Construction of binary vectors with bi-selectable markers for generating marker-free transgenic plants. Bot. Stud. 52: 239-248. Mansoor, S., Khan, S.H., Hussain, M., Mushtaq, N., Zafar, Y., and Malik, K.A. 2000. Evidence that watermelon leaf curl disease in Pakistan is associated with Tomato leaf curl virus-India, a bipartite begomovirus. Plant Dis. 84: 102 Mansoor, S., Briddon, R.W., Zafar, Y., and Stanley, J. 2003. Geminivirus disease complexes: an emerging threat. Trends Plant Sci. 8: 128-134. Maruthi, M.N., Rekha, A.R., Cork, A., and Colvin, J. 2005. First report of Tomato leaf curl New Delhi virus infecting tomato in Bangladesh. Plant Dis. 89: 1011. Matsumoto, T. 1946. Tabacco disease in Formosa. Mem Fac. Agric. Taiwan Univ. 1: 1-26. Matthews, R.E.F. 1979. Classification and nomenclature of virus. Intervirology 12: 129-296. Moriones, E., and Castillo, J.N. 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 71: 123-134. Noueiry, A.O., Lucas, W.J., and Gilbertson, R.L. 1994. Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 79: 925-932. Padidam, M., Beachy, R.N., and Fauquet, C.M. 1995. Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J. Gen. Virol. 76: 25-35. Padidam, M., Beachy, R. N., and Fauquet, C.M. 1996. The role of AV2 (precoat) and coat protein in viral replication and movement in tomato leaf curl geminivirus. Virology 224: 390-440. Park, J., Hwang, H.S., Buckley, K.J., Park, J.B., Auh, C.K., Kim, D.G., Lee, S., and Davis, K.R. 2010. C4 protein of Beet severe curly top virus is a pathomorphogenetic factor in Arabidopsis. Plant Cell Reports 29: 1377-1389. Pascal, E., Goodlove, P.E., Wu, L.-C and Lazarowitz, S.G. 1993. Transgenic tobacco plants expressing the geminivirus BL1 protein exhibit symptoms of viral disease. Plant Cell 5: 795-807. Petty, I.T., Carter, S.C., Morra, M.R., Jeffrey, J.L., and Olivey, H.E. 2000. Bipartite geminivirus host adaptation determined cooperatively by coding and noncoding sequences of the genome. Virology 277: 429-438. Razavinejad, S., Heydarnejad, J., Kamali, M., Massumi H., Kraberger S., and Varsani, A. 2013. Genetic diversity and host range studies of Turnip curly top virus. Virus Genes 46: 345-353 Rigden, J.E., Krake, L.R., Rezaian, M.A., and Dry, I.B. 1994. ORF C4 of Tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204: 847-850. Rojas, M.R., Jiang, H., Salati, R., Xoconostle-Cazares, B., Sudarshana, M.R., Lucas W.J., and Gilbertson, R.L. 2001. Fuctional ananlysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus.Virology 291: 110-125. Rojas, M.R., Hagen, C., Lucas, W.J., and Gilbertson, R.L. 2005. Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43: 361-394. Samretwanich, K., Chiemsombat, P., Kittipakorn, K., and Ikegami, M. 2000a. Tomato leaf curl geminivirus associated with cantaloupe yellow leaf disease in Thailand. World J. Microb. Biot. 16: 401-403. Samretwanich, K., Chiemsombat, P., Kittipakorn, K., and Ikegami, M. 2000b. Tomato leaf curl geminivirus associated with cucumber yellow leaf disease in Thailand. Phytopathol. Z. 48: 615-617. Samretwanich, K., Chiemsombat, P., Kittipakorn, K., and Ikegami, M. 2000c. Yellow leaf disease of cantaloupe and wax gourd from Thailand caused by Tomato leaf curl virus. Plant Dis. 84: 200. Samretwanich, K., Chiemsombat, P., Kittipakorn, K., and Ikegami, M. 2000d. Yellow leaf disease of muskmelon from Thailand caused by Tomato leaf curl virus. Plant Dis. 84: 708. Schaffer, R.L., Miller, C.G., and Petty, I. 1995. Virus and host-specific adaptations in the BL1 and BV1 genes of bipartite geminiviruses. Virology. 214: 330-338. Seal, S.E., VandenBosch, F., Jeger, M.J. 2006. Factors influencing begomovirus evolution and their increasing golbal significance: implications for sustainable contol. Crit. Rev. Plant Sci. 25: 23-46. Selth, L.A., Dogra, S.C., Rasheed, M.S., Healy, H., Randles, J.W., and Rezaian, M.A. 2005. A NAC domain protein interacts with Tomaoto leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311-325. Sohrab, S.S., Mandal, B., Pant, R.P., and Varma, A. 2003. First report of association of Tomato leaf curl virus-New Delhi virus with yellow mosaic disease of Luffa cylindrica in India. Plant Dis. 87: 1148. Stanley, J., and Latham, J.R. 1992. A symptom variant of beet curly top geminivirus produced by mutation of open reading frame C4. Virology 190: 506-509. Stoner, W. N., and Hogan, W.D. 1950. Viruses affecting vegetable crops in the Everglades area. Fla. Agric. Exp. Stn. Ann. Rep. 206 pp. Thottappily, G. 1992. Plant virus diseases of importance to African agriculture. Phytopathology 134: 265-288. Thresh, J.M.,Otim-Nape, G.W., Thankappan, M., and Muniyappa, V. 1998. The mosaic disease of cassava in African and India caused by whitefly-born geminiviruses. Rev. Plant Pathol. 77: 935-945. Tsai, M.-C., Liu, C.-S., and Su, H.-J. 1997. Poinsettia leaf curl, a new disease caused by a geminivirus. J. Phytopathol. 145: 347-350. . Tsai, W.-S., Shih, S.L., Green, S.K., and Jan, F.-J. 2007. Occurrence and molecular characterization of Squash leaf curl Philippines virus in Taiwan. Plant Dis. 91: 907. Tsai, W.-S., Shih, S.-L., kenyone, S.K., Green, S.K., and Jan, F.-J. 2011. Temporal distribution and pathogenicity of the predominant tomato-infecting begomoviruses in Taiwan. Plant Pathol. 60: 787-799. Usharani, K.S., Surendranath, B., Paul-Khurana, S.M., Grag, I.D., and Malathi, V.D. 2004. Potato leaf curl-a new disease of potato in northern India caused by a strain of Tomato leaf curl New Delhi virus. Plant Pathol. 53: 235. Vanitharani, R., Chellappan P., Pita, J.S., and Fauquet, C. 2004. Differential roles of AC2 and AC4 of casssava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J. Virol. 78: 9487-9498. van Wezel, R., Liu, H., Tien, P., Stanley, J., and Hong, Y. 2001. Gene C2 of the monopartite geminivirus Tomato yellow leaf curl virus-China encodes a pathogenicity determinant that is localized in the nucleus. Mol. Plant-Microb Interact. 14: 1125-1128. Varma, A. and Malathi, V. 2003. Emerging geminivirus problems: a serious threat to crop production. Ann. Appl. Biol. 142: 145-164. Varsani, A., Shepherd, D.N., Dent, K., Monjane, A.L., Rybicki, E.P., and Martin, D. P. 2009. A highly divergent south African geminivirus species illuminates the ancient evolutionary history of this family. J. Virol. 6: 36 Varsani, A., Navas-Castillo, J., Moriones, E., Hernandez-Zepeda, C., Idris, A., Brown, J.K., Zerbini, F.M., and Martin, D.P. 2014. Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch. Virol. (DOI 10.1007/s00705-014-2050-2) Voinnet, O., Pinto, Y.M., and Baulcombe, D.C. 1999. Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. U. S. A. 96: 14147-14152. Zhang, S.C., Ghosh, R., and Jeske, H. 2002. Subcellular targeting domains of Abutilon mosaic geminivirus movement protein BC1. Arch. Virol. 147: 2349-2363. Zhou,Y., Rojas, M.R., Park, M.R., Seo, Y.S., Lucas, W.J., and Gilbertson, R.L. 2011. Histone H3 interacts and colocalizes with the nuclear shuttle protein and the movement protein of a geminivirus. J. Virol. 85: 11821-11832. Zrachya, A., Glick E., Levy, A., Arazi, T., Citovsky, V., and Gafni, Y. 2007. Suppressor of RNA silencing encoding by Tomato yellow leaf curl virus-Israel. Virology 358: 159-165.
摘要: 雙生病毒科 (Geminiviridae) 的病毒遍及全世界,並且寄主範圍十分廣泛,對於現今全球的農業經濟危害十分嚴重。新德里番茄捲葉病毒 (Tomato leaf curl New Delhi virus, ToLCNDV) 屬於雙生病毒科豆類金黃嵌紋病毒屬 (Begomovirus),常被報導於熱帶與亞熱帶地區,能感染許多種植物,其中又以葫蘆科與茄科的作物最為嚴重,例如印度與巴基斯坦的番茄,以及泰國的葫蘆科作物等。ToLCNDV具有二條約2.7 kb的單股環狀DNA,分別命名為DNA-A和DNA-B。DNA-A內編碼著鞘蛋白、複製與基因表現相關的蛋白;而DNA-B編碼的蛋白主要與病毒移動相關。於2007年四月,本實驗室從台灣的東方型甜瓜銀輝栽培種 (Cucumis melo var. makuwa cv. Sliver Light) 上分離出一種能機械接種的ToLCNDV分離株,將其命名為新德里番茄捲葉病毒東方甜瓜分離株 (ToLCNDV oriental melon isolate, ToLCNDV-OM),ToLCNDV-OM可感染菸草及番茄兩種寄主;另一分離株則是從泰國的胡瓜 (C. sativus L.) 上所分離出來,將其命名為新德里番茄捲葉病毒黃瓜分離株 (ToLCNDV cucumber isolate, ToLCNDV-CB),而此分離株無法感染番茄。因此本實驗目的是利用基因重組的策略,來探討影響此兩種分離株對於番茄寄主適應差異之關鍵因子為何。將各種不同基因置換的具感染力病毒構築,分別以農桿菌注射接種於圓葉菸草 (Nicotiana benthamiana) 以及番茄農友301栽培種 (Lycopersicon esculentum Mill var. Farmers 301),其接種結果發現ToLCNDV-OM的移動蛋白 (movement protein, MP) 是影響病毒感染番茄的關鍵蛋白。而又藉由胺基酸點突變的方式進一步發現,移動蛋白的第19個胺基酸 (谷胺酸,E19) 是影響ToLCNDV-OM對於番茄寄主適應性的關鍵因子。而ToLCNDV- CB除了移動蛋白的第19個胺基酸,第3個胺基酸 (異白胺酸,I3) 也會影響其對番茄的寄主適應性。本研究藉由同一種病毒的兩種分離株,利用基因重組和點突變的策略,精確地指出移動蛋白為影響ToLCNDV寄主適應性的關鍵因子。
Members in the Geminiviridae have wide host range including economically important crops and are cosmopolitan in distribution. Tomato leaf curl New Delhi virus (ToLCNDV), a member of genus Begomovirus, infects a wide range of plants in tropical and subtropical regions, especially cucurbitaceous and solanaceous crops. It was isolated from tomato in India and Pakistan and from cucurbitaceous plants in Thailand. ToLCNDV contains bipartite genome, designated as DNA-A and DNA-B and are approximately 2.7 kb each in size. DNA-A encodes coat protein, replication-associated proteins and proteins involved in gene expression. Similarly, DNA-B encodes proteins responsible for viral movement. In April 2007, a mechanically transmissible isolate of ToLCNDV which was later designated as ToLCNDV oriental melon (ToLCNDV-OM) was isolated from oriental melon (C. melo var. makuwa cv. Sliver Light) in Taiwan. This ToLCNDV-OM isolate can also infect tomato (L. esculentum Mill. var. Farmers 301). However, another isolate designated as ToLCNDV cucumber (ToLCNDV-CB) and was originally isolated from cucumber can not infect tomato. In order to investigate the factors that affect its host adaptability, gene recombination between ToLCNDV-OM and ToLCNDV-CB was done. Tobacco (N. benthamiana) and tomato plants grown in green house were challenged with the recombinant viruses via agroinfiltration. The inoculation results showed that the exchange of the gene coding for movement protein (MP) affected the virus infectivity on tomato. Furthermore, we have also identified that the 19th amino acid residue (glutamate, E19) of ToLCNDV-OM MP gene determines the tomato adaptation via the protein point mutation protocol. It was also shown that not only19th amino acid residue of ToLCNDV-CB MP gene, but the 3rd amino acid residue (isoleucine, I3) also has influence in its adaptability in the tomato. In this study, we used two isolates of one virus to prove that the MP of ToLCNDV is the critical factor for its host adaptability via gene recombination and point mutation.
URI: http://hdl.handle.net/11455/89332
文章公開時間: 10000-01-01
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.