Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89337
標題: 無篩選標幟且同時對粉蝨傳播DNA雙生病毒及薊馬傳播RNA蕃茄斑萎病毒具有抗性之轉基因菸草
Marker-free Transgenic Tobacco Lines with Concurrent Resistance to Whitefly-Borne DNA Geminivirus and Thrips-Borne RNA Tospovirus
作者: Ching-Fu Yang
楊景富
關鍵字: 粉蝨傳播
DNA雙生病毒
薊馬傳播
RNA蕃茄斑萎病毒
Whitefly-Borne
DNA Geminivirus
Thrips-Borne
RNA Tospovirus
引用: 第一章(1)Adenot, X., Elmayan, T., Lauressergues, D., Boutet, S., Bouche, N., Gasciolli, V., and Vaucheret, H. 2006. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927-932.(2)Arguello-Astorga, G.R., Herrera-Estrella, L., and Rivera-Bustamante, R. 1994a. Experimental and theoretical definition of geminivirus origin of replication. Plant Mol Biol 26:553-556. (3)Arguello-Astorga, G.R., Guevara-Gonzalez, R.G., Herrera-Estrella, L.R., and Rivera-Bustamante, R.F. 1994b. Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203:90-100.(4)Azevedo, J., Garcia, D., Pontier, D., Ohnesorge, S., Yu, A., Garcia, S., Braun, L., Bergdoll, M., Hakimi, M.A., Lagrange, T., and Voinnet, O. 2010. Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24:904-915.(5)Baliji, S., Sunter, J., and Sunter, G. 2007. Transcriptional analysis of complementary sense genes in Spinach curly top virus and functional role of C2 in pathogenesis. Mol Plant-Microbe Interact 20:194-206. (6)Bartee, L., Malagnac, F., and Bender, J. 2001. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev 15:1753-1758. (7)Baumberger, N., Tsai, C.H., Lie, M., Havecker, E., and Baulcombe, D.C. 2007. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 17:1609-1614.(8)Bernatavichute, Y.V., Zhang, X., Cokus, S., Pellegrini, M., and Jacobsen, S.E. 2008. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One 3:e3156.(9)Bisaro, D.M. 2006. Silencing suppression by geminivirus proteins. Virology 344:158-168. (10)Blevins, T., Rajeswaran, R., Shivaprasad, P.V., Beknazariants, D., Si-Ammour, A., Park, H.S., Vazquez, F., Robertson, D., Meins, F., Jr., Hohn, T., and Pooggin, M.M. 2006. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233-6246. (11)Bortolamiol, D., Pazhouhandeh, M., Marrocco, K., Genschik, P., and Ziegler-Graff, V. 2007. The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol 17:1615-1621. (12)Bouche, N., Lauressergues, D., Gasciolli, V., and Vaucheret, H. 2006. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347-3356. (13)Briddon, R.W., Bedford, I.D., Tsai, J.H., and Markham, P.G. 1996. Analysis of the nucleotide sequence of the treehopper-transmitted geminivirus, tomato pseudo-curly top virus, suggests a recombinant origin. Virology 219:387-394.(14)Bridgen, A., Weber, F., Fazakerley, J.K., and Elliott, R.M. 2001. Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. Proc Natl Acad Sci U S A 98:664-669. (15)Brough, C.L., Gardiner, W.E., Inamdar, N.M., Zhang, X.Y., Ehrlich, M., and Bisaro, D.M. 1992. DNA methylation inhibits propagation of tomato golden mosaic virus DNA in transfected protoplasts. Plant Mol Biol 18:703-712. (16)Bucher, E., Sijen, T., De Haan, P., Goldbach, R., and Prins, M. 2003. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol 77:1329-1336.(17)Buchmann, R.C., Asad, S., Wolf, J.N., Mohannath, G., and Bisaro, D.M. 2009. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 83:5005-5013. (18)Canizares, M.C., Lozano-Duran, R., Canto, T., Bejarano, E.R., Bisaro, D.M., Navas-Castillo, J., and Moriones, E. 2013. Effects of the crinivirus coat protein-interacting plant protein SAHH on post-transcriptional RNA silencing and its suppression. Mol Plant-Microbe Interact 26:1004-1015. (19)Cao, X., Aufsatz, W., Zilberman, D., Mette, M.F., Huang, M.S., Matzke, M., and Jacobsen, S.E. 2003. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol 13:2212-2217. (20) Castillo, A.G., Collinet, D., Deret, S., Kashoggi, A., and Bejarano, E.R. 2003. Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312:381-394. (21)Chen, C.C., and Chiu, R.J. 1996. A tospovirus infection peanut in Taiwan. Acta Hortic 431:57-67. (22)Chen, T.C., Lu, Y.Y., Cheng, Y.H., Li, J.T., Yeh, Y.C., Kang, Y.C., Chang, C.P., Huang, L.H., Peng, J.C., and Yeh, S.D. 2010. Serological relationship between Melon yellow spot virus and Watermelon silver mottle virus and differential detection of the two viruses in cucurbits. Arch Virol 155:1085-1095. (23)Chuang, C.F., and Meyerowitz, E.M. 2000. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:4985-4990. (24)Cooper, B., Lapidot, M., Heick, J.A., Dodds, J.A., and Beachy, R.N. 1995. A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206:307-313. (25)Daxinger, L., Kanno, T., Bucher, E., van der Winden, J., Naumann, U., Matzke, A.J., and Matzke, M. 2009. A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. EMBO J 28:48-57. (26)de Avila, A.C., de Haan, P., Kormelink, R., Resende Rde, O., Goldbach, R.W., and Peters, D. 1993. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J Gen Virol 74 ( Pt 2):153-159. (27)de Haan, P., Wagemakers, L., Peters, D., and Goldbach, R. 1989. Molecular cloning and terminal sequence determination of the S and M RNAs of tomato spotted wilt virus. J Gen Virol 70 ( Pt 12):3469-3473. (28)de Haan, P., Wagemarker, L., Peters, D., and Goldbach, R. 1990. The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 71:1001-1007. (29)de Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D., and Goldbach, R. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol 72 ( Pt 9):2207-2216. (30)Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K.D., Carrington, J.C., and Voinnet, O. 2006. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68-71. (31)Diaz-Pendon, J.A., Li, F., Li, W.X., and Ding, S.W. 2007. Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19:2053-2063. (32)Dougherty, W.G., Lindbo, J.A., Smith, H.A., Parks, T.D., Swaney, S., and Proebsting, W.M. 1994. RNA-mediated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Mol Plant- Microbe Interact 7:544-552. (33)English, J.J., Mueller, E., and Baulcombe, D.C. 1996. Suppression of Virus Accumulation in Transgenic Plants Exhibiting Silencing of Nuclear Genes. Plant Cell 8:179-188. (34)Ermak, G., Paszkowski, U., Wohlmuth, M., Mittelsten Scheid, O., and Paszkowski, J. 1993. Cytosine methylation inhibits replication of African cassava mosaic virus by two distinct mechanisms. Nucleic Acids Res 21:3445-3450. (35)Frischmuth, T., and Stanley, J. 1992. Characterization of beet curly top virus subgenomic DNA localizes sequences required for replication. Virology 189:808-811.(36)Fukunaga, R., and Doudna, J.A. 2009. dsRNA with 5' overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 28:545-555.(37)Garrido-Ramirez, E.R., Sudarshana, M.R., and Gilbertson, R.L. 2000. Bean golden yellow mosaic virus from Chiapas, Mexico: Characterization, Pseudorecombination with Other Bean-Infecting Geminiviruses and Germ Plasm Screening. Phytopathology 90:1224-1232. (38)Gasciolli, V., Mallory, A.C., Bartel, D.P., and Vaucheret, H. 2005. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494-1500. (39)Gendrel, A.V., Lippman, Z., Yordan, C., Colot, V., and Martienssen, R.A. 2002. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297:1871-1873. (40)Glick, E., Zrachya, A., Levy, Y., Mett, A., Gidoni, D., Belausov, E., Citovsky, V., and Gafni, Y. 2008. Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci U S A 105:157-161. (41)Goldbach, R., and Peters, D. 1994. Possible causes of the emergence of tospovirus diseases. Semin Virol 5:113-120. (42)Goto, K., Kobori, T., Kosaka, Y., Natsuaki, T., and Masuta, C. 2007. Characterization of silencing suppressor 2b of cucumber mosaic virus based on examination of its small RNA-binding abilities. Plant Cell Physiol 48:1050-1060. (43)Grant, S.R. 1999. Dissecting the mechanisms of posttranscriptional gene silencing: divide and conquer. Cell 96:303-306. (44)Grewal, S.I., and Elgin, S.C. 2007. Transcription and RNA interference in the formation of heterochromatin. Nature 447:399-406. (45)Guo, H., Song, X., Xie, C., Huo, Y., Zhang, F., Chen, X., Geng, Y., and Fang, R. 2013. Rice yellow stunt rhabdovirus protein 6 suppresses systemic RNA silencing by blocking RDR6-mediated secondary siRNA synthesis. Mol Plant-Microbe Interact 26:927-936. (46)Gutierrez, C. 1999. Geminivirus DNA replication. Cell Mol Life Sci 56:313-329. (47)Gutierrez, C. 2000. Geminiviruses and the plant cell cycle. Plant Mol Biol 43:763-772. (48)Haas, G., Azevedo, J., Moissiard, G., Geldreich, A., Himber, C., Bureau, M., Fukuhara, T., Keller, M., and Voinnet, O. 2008. Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J 27:2102-2112. (49)Hagen, C., Rojas, M.R., Kon, T., and Gilbertson, R.L. 2008. Recovery from Cucurbit leaf crumple virus (family Geminiviridae, genus Begomovirus) infection is an adaptive antiviral response associated with changes in viral small RNAs. Phytopathology 98:1029-1037.(50)Hanley-Bowdoin, L., Settlage, S.B., and Robertson, D. 2004. Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol Plant Pathol 5:149-156. (51)Hanley-Bowdoin, L., Bejarano, E.R., Robertson, D., and Mansoor, S. 2013. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11:777-788. (52)Hanley-Bowdoin, L., Settlage, S.B., Orozco, B.M., Nagar, S., and Robertson, D. 2000. Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35:105-140. (53)Hao, L., Wang, H., Sunter, G., and Bisaro, D.M. 2003. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. Plant Cell 15:1034-1048. (54)Hartitz, M.D., Sunter, G., and Bisaro, D.M. 1999. The tomato golden mosaic virus transactivator (TrAP) is a single-stranded DNA and zinc-binding phosphoprotein with an acidic activation domain. Virology 263:1-14. (55)Heydarnejad, J., Keyvani, N., Razavinejad, S., Massumi, H., and Varsani, A. 2013. Fulfilling Koch's postulates for beet curly top Iran virus and proposal for consideration of new genus in the family Geminiviridae. Arch Virol 158:435-443. (56)Howarth, A.J., Caton, J., Bossert, M., and Goodman, R.M. 1985. Nucleotide sequence of bean golden mosaic virus and a model for gene regulation in geminiviruses. Proc Natl Acad Sci U S A 82:3572-3576. (57)Idris, A.M., Hiebert, E., Bird, J., and Brown, J.K. 2003. Two Newly Described Begomoviruses of Macroptilium lathyroides and Common Bean. Phytopathology 93:774-783. (58)Ingelbrecht, I., Van Houdt, H., Van Montagu, M., and Depicker, A. 1994. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc Natl Acad Sci U S A 91:10502-10506. (59)Jeske, H. 2009. Geminiviruses. Curr Top Microbiol Immunol 331:185-226. (60)Jeske, H., Lutgemeier, M., and Preiss, W. 2001. DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO J 20:6158-6167. (61)Johnson, L., Cao, X., and Jacobsen, S. 2002. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr Biol 12:1360-1367. (62)Jones, A.L., Thomas, C.L., and Maule, A.J. 1998. De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. EMBO J 17:6385-6393. (63)Jones, L., Ratcliff, F., and Baulcombe, D.C. 2001. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr Biol 11:747-757. (64)Kerschen, A., Napoli, C.A., Jorgensen, R.A., and Muller, A.E. 2004. Effectiveness of RNA interference in transgenic plants. FEBS Lett 566:223-228. (65)Kikkert, M., Verschoor, A., Kormelink, R., Rottier, P., and Goldbach, R. 2001. Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells. J Virol 75:1004-1012. (66)King, A.M., Lefkowitz, E., Adams, M.J., and Carstens, E.B. 2011. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, New York. (67)Kormelink, R., de Haan, P., Meurs, C., Peters, D., and Goldbach, R. 1992. The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J Gen Virol 73 ( Pt 11):2795-2804. (68)Kormelink, R., Storms, M., Van Lent, J., Peters, D., and Goldbach, R. 1994. Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56-65. (69)Kormelink, R., Kitajima, E.W., De Haan, P., Zuidema, D., Peters, D., and Goldbach, R. 1991. The nonstructural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181:459-468. (70)Kurihara, Y., and Watanabe, Y. 2004. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101:12753-12758. (71)Lacatus, G., and Sunter, G. 2008. Functional analysis of bipartite begomovirus coat protein promoter sequences. Virology 376:79-89. (72)Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E.J., Carrington, J.C., Liu, Y.P., Dolja, V.V., Calvino, L.F., Lopez-Moya, J.J., and Burgyan, J. 2006. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25:2768-2780. (73)Law, M.D., Speck, J., and Moyer, J.W. 1992. The M RNA of impatiens necrotic spot Tospovirus (Bunyaviridae) has an ambisense genomic organization. Virology 188:732-741. (74)Lecoq, K., Belloc, I., Desgranges, C., and Daignan-Fornier, B. 2001. Role of adenosine kinase in Saccharomyces cerevisiae: identification of the ADO1 gene and study of the mutant phenotypes. Yeast 18:335-342. (75)Lee, A.M., Denis, M.P., and John, E.T. 2002. A new tospovirus serogroup IV species infecting capsicum and tomato in Queensland, Australia. Aust. plant pathol 31:231-239. (76)Lewsey, M.G., and Carr, J.P. 2009. Effects of DICER-like proteins 2, 3 and 4 on cucumber mosaic virus and tobacco mosaic virus infections in salicylic acid-treated plants. J Gen Virol 90:3010-3014. (77)Li, J., Yang, Z., Yu, B., Liu, J., and Chen, X. 2005. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol 15:1501-1507. (78)Lin, C.Y., Tsai, W.S., Ku, H.M., and Jan, F.J. 2012a. Evaluation of DNA fragments covering the entire genome of a monopartite begomovirus for induction of viral resistance in transgenic plants via gene silencing. Transgenic Res 21:231-241. (79)Lin, C.Y., Ku, H.M., Chiang, Y.H., Ho, H.Y., Yu, T.A., and Jan, F.J. 2012b. Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct. Transgenic Res 21:983-993. (80)Lin, Y.H., Chen, T.C., Hsu, H.T., Liu, F.L., Chu, F.H., Chen, C.C., Lin, Y.Z., and Yeh, S.D. 2005. Serological Comparison and Molecular Characterization for Verification of Calla lily chlorotic spot virus as a New Tospovirus Species Belonging to Watermelon silver mottle virus Serogroup. Phytopathology 95:1482-1488. (81)Lindroth, A.M., Cao, X., Jackson, J.P., Zilberman, D., McCallum, C.M., Henikoff, S., and Jacobsen, S.E. 2001. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077-2080. (82)Liu, Q., Feng, Y., and Zhu, Z. 2009. Dicer-like (DCL) proteins in plants. Funct Integr Genomics 9:277-286. (83)Lomonossoff, G.P. 1995. Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33:323-343.(84)Luque, A., Sanz-Burgos, A.P., Ramirez-Parra, E., Castellano, M.M., and Gutierrez, C. 2002. Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology 302:83-94. (85)Mathieu, O., Reinders, J., Caikovski, M., Smathajitt, C., and Paszkowski, J. 2007. (86)Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130:851-862. (87)Mette, M.F., Aufsatz, W., van der Winden, J., Matzke, M.A., and Matzke, A.J. 2000. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194-5201. (88)Moffatt, B.A., Stevens, Y.Y., Allen, M.S., Snider, J.D., Pereira, L.A., Todorova, M.I., Summers, P.S., Weretilnyk, E.A., Martin-McCaffrey, L., and Wagner, C. 2002. Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiol 128:812-821. (89)Mohamed, N.A. 1981. Isolation and Characterization of Subviral Structures from Tomato Spotted Wilt Virus. J Gen Virol 53:197-208. (90)Moissiard, G., and Voinnet, O. 2006. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci U S A 103:19593-19598. (91)Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B., Jouette, D., Lacombe, A.M., Nikic, S., Picault, N., Remoue, K., Sanial, M., Vo, T.A., and Vaucheret, H. 2000. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533-542. (92)Muangsan, N., Beclin, C., Vaucheret, H., and Robertson, D. 2004. Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. Plant J 38:1004-1014. (93)Nakazawa, Y., Hiraguri, A., Moriyama, H., and Fukuhara, T. 2007. The dsRNA-binding protein DRB4 interacts with the Dicer-like protein DCL4 in vivo and functions in the trans-acting siRNA pathway. Plant Mol Biol 63:777-785. (94)Pakniat-Jahromy, A., Behjatnia, S.A., Dry, I.B., Izadpanah, K., and Rezaian, M.A. 2010. A new strategy for generating geminivirus resistant plants using a DNA betasatellite/split barnase construct. J Virol Methods 170:57-66. (95)Palmer, K.E., and Rybicki, E.P. 1998. The molecular biology of mastreviruses. Adv Virus Res 50:183-234. (96)Papp, I., Mette, M.F., Aufsatz, W., Daxinger, L., Schauer, S.E., Ray, A., van der Winden, J., Matzke, M., and Matzke, A.J. 2003. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132:1382-1390. (97)Pappu, H.R., Jones, R.A., and Jain, R.K. 2009. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141:219-236. (98)Park, S.M., Lee, J.S., Jegal, S., Jeon, B.Y., Jung, M., Park, Y.S., Han, S.L., Shin, Y.S., Her, N.H., Lee, J.H., Lee, M.Y., Ryu, K.H., Yang, S.G., and Harn, C.H. 2005. Transgenic watermelon rootstock resistant to CGMMV (cucumber green mottle mosaic virus) infection. Plant Cell Rep 24:350-356. (99)Peng, J.C., Chen, T.C., Raja, J.A., Yang, C.F., Chien, W.C., Lin, C.H., Liu, F.L., Wu, H.W., and Yeh, S.D. 2014. Broad-Spectrum Transgenic Resistance against Distinct Tospovirus Species at the Genus Level. PLoS One 9:e96073. (100)Qu, F., Ye, X., and Morris, T.J. 2008. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A 105:14732-14737. (101)Raja, P., Wolf, J.N., and Bisaro, D.M. 2010. RNA silencing directed against geminiviruses: post-transcriptional and epigenetic components. Biochim Biophys Acta 1799:337-351. (102)Raja, P., Sanville, B.C., Buchmann, R.C., and Bisaro, D.M. 2008. Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 82:8997-9007. (103)Reyes, M.I., Nash, T.E., Dallas, M.M., Ascencio-Ibanez, J.T., and Hanley-Bowdoin, L. 2013. Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol 87:9691-9706. (104)Rodriguez-Negrete, E.A., Carrillo-Tripp, J., and Rivera-Bustamante, R.F. 2009. RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol 83:1332-1340. (105)Rojas, M.R., Hagen, C., Lucas, W.J., and Gilbertson, R.L. 2005. Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361-394. (106)Rybicki, E.P. 1994. A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch Virol 139:49-77. (107)Sakimura, K. 1962. The present status of thrips-borne disease, in Maramorocsh. K. (ed): Biological transmission of disease agents. Academic Press, New York and London. (108)Saunders, K., Lucy, A., and Stanley, J. 1991. DNA forms of the geminivirus African cassava mosaic virus consistent with a rolling circle mechanism of replication. Nucleic Acids Res 19:2325-2330. (109)Schmitz, R.J., Hong, L., Fitzpatrick, K.E., and Amasino, R.M. 2007. DICER-LIKE 1 and DICER-LIKE 3 redundantly act to promote flowering via repression of FLOWERING LOCUS C in Arabidopsis thaliana. Genetics 176:1359-1362. (110)Schnettler, E., Hemmes, H., Huismann, R., Goldbach, R., Prins, M., and Kormelink, R. 2010. Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules. J Virol 84:11542-11554. (111)Settlage, S.B., See, R.G., and Hanley-Bowdoin, L. 2005. Geminivirus C3 protein: replication enhancement and protein interactions. J Virol 79:9885-9895. (112)Settlage, S.B., Miller, A.B., Gruissem, W., and Hanley-Bowdoin, L. 2001. Dual interaction of a geminivirus replication accessory factor with a viral replication protein and a plant cell cycle regulator. Virology 279:570-576. (113)Sin, S.H., McNulty, B.C., Kennedy, G.G., and Moyer, J.W. 2005. Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proc Natl Acad Sci U S A 102:5168-5173. (114)Smith, H.A., Swaney, S.L., Parks, T.D., Wernsman, E.A., and Dougherty, W.G. 1994. Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of nonessential RNAs. Plant Cell 6:1441-1453. (115)Stenger, D.C., Revington, G.N., Stevenson, M.C., and Bisaro, D.M. 1991. Replicational release of geminivirus genomes from tandemly repeated copies: evidence for rolling-circle replication of a plant viral DNA. Proc Natl Acad Sci U S A 88:8029-8033. (116)Sunter, G., and Bisaro, D.M. 1991. Transactivation in a geminivirus: AL2 gene product is needed for coat protein expression. Virology 180:416-419. (117)Sunter, G., and Bisaro, D.M. 1992. Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4:1321-1331. (118)Sunter, G., and Bisaro, D.M. 1997. Regulation of a geminivirus coat protein promoter by AL2 protein (TrAP): evidence for activation and derepression mechanisms. Virology 232:269-280. (119)Sunter, G., and Bisaro, D.M. 2003. Identification of a minimal sequence required for activation of the tomato golden mosaic virus coat protein promoter in protoplasts. Virology 305:452-462. (120)Sunter, G., Sunter, J.L., and Bisaro, D.M. 2001. Plants expressing tomato golden mosaic virus AL2 or beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses. Virology 285:59-70. (121)Sunter, G., Hartitz, M.D., Hormuzdi, S.G., Brough, C.L., and Bisaro, D.M. 1990. Genetic analysis of tomato golden mosaic virus: ORF AL2 is required for coat protein accumulation while ORF AL3 is necessary for efficient DNA replication. Virology 179:69-77. (122)Takeda, A., Tsukuda, M., Mizumoto, H., Okamoto, K., Kaido, M., Mise, K., and Okuno, T. 2005. A plant RNA virus suppresses RNA silencing through viral RNA replication. EMBO J 24:3147-3157. (123)Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S., and Okuno, T. 2002. Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 532:75-79. (124)Tran, R.K., Zilberman, D., de Bustos, C., Ditt, R.F., Henikoff, J.G., Lindroth, A.M., Delrow, J., Boyle, T., Kwong, S., Bryson, T.D., Jacobsen, S.E., and Henikoff, S. 2005. Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biol 6:R90. (125)Ullman D. E., Meideros, R., Campbell, L.R., Whitfield, A.E., Sherwood J. L., and German, T.L. 2002. Thrips as vectors of tospoviruses. Adv Bot Res 36:113-140. (126)Ullman, D.E., Meideros, R., Campbell, L.R., Whitfield, A.E., Sherwood, J.L., and German, T.L. 2002. Thrips as vectors of tospoviruses. Adv Bot Res 36:113-140. (127)Van Kammen, A., Henstra, S., and Le, T.S. 1966. Morphology of tomato spotted wilt virus. Virology 30:574-577. (128)van Wezel, R., Liu, H., Tien, P., Stanley, J., and Hong, Y. 2001. Gene C2 of the monopartite geminivirus tomato yellow leaf curl virus-China encodes a pathogenicity determinant that is localized in the nucleus. Mol Plant-Microbe Interact 14:1125-1128. (129)Van Wezel, R., Liu, H., Wu, Z., Stanley, J., and Hong, Y. 2003. Contribution of the zinc finger to zinc and DNA binding by a suppressor of posttranscriptional gene silencing. J Virol 77:696-700. (130)Vance, V., and Vaucheret, H. 2001. RNA silencing in plants--defense and counterdefense. Science 292:2277-2280. (131)Vanderschuren, H., Stupak, M., Futterer, J., Gruissem, W., and Zhang, P. 2007a. Engineering resistance to geminiviruses--review and perspectives. Plant Biotechnol J 5:207-220. (132)Vanderschuren, H., Akbergenov, R., Pooggin, M.M., Hohn, T., Gruissem, W., and Zhang, P. 2007b. Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol Biol 64:549-557. (133)Vanitharani, R., Chellappan, P., and Fauquet, C.M. 2005. Geminiviruses and RNA silencing. Trends Plant Sci 10:144-151. (134)Vanitharani, R., Chellappan, P., Pita, J.S., and Fauquet, C.M. 2004. Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487-9498. (135)Vargason, J.M., Szittya, G., Burgyan, J., and Hall, T.M. 2003. Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115:799-811. (136)Varsani, A., Navas-Castillo, J., Moriones, E., Hernandez-Zepeda, C., Idris, A., Brown, J.K., Murilo Zerbini, F., and Martin, D.P. 2014. Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol.(137)Vaucheret, H., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B., Mourrain, P., Palauqui, J.C., and Vernhettes, S. 1998. Transgene-induced gene silencing in plants. Plant J 16:651-659. (138)Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S.I., and Moazed, D. 2004. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672-676. (140)Voinnet, O., Pinto, Y.M., and Baulcombe, D.C. 1999. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96:14147-14152. (141)Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I., and Martienssen, R.A. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833-1837. (142)Wang, H., Hao, L., Shung, C.Y., Sunter, G., and Bisaro, D.M. 2003. Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15:3020-3032. (143)Wang, H., Buckley, K.J., Yang, X., Buchmann, R.C., and Bisaro, D.M. 2005. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 79:7410-7418. (144)Wassenegger, M., and Pelissier, T. 1998. A model for RNA-mediated gene silencing in higher plants. Plant Mol Biol 37:349-362. (145)Wesley, S.V., Helliwell, C.A., Smith, N.A., Wang, M.B., Rouse, D.T., Liu, Q., Gooding, P.S., Singh, S.P., Abbott, D., Stoutjesdijk, P.A., Robinson, S.P., Gleave, A.P., Green, A.G., and Waterhouse, P.M. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581-590. (146)Wierzbicki, A.T., Haag, J.R., and Pikaard, C.S. 2008. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135:635-648. (147)Wu, H.W., Yu, T.A., Raja, J.A., Wang, H.C., and Yeh, S.D. 2009. Generation of transgenic oriental melon resistant to Zucchini yellow mosaic virus by an improved cotyledon-cutting method. Plant Cell Rep 28:1053-1064. (148)Yang, X., Baliji, S., Buchmann, R.C., Wang, H., Lindbo, J.A., Sunter, G., and Bisaro, D.M. 2007. Functional modulation of the geminivirus AL2 transcription factor and silencing suppressor by self-interaction. J Virol 81:11972-11981. (149)Yang, X., Xie, Y., Raja, P., Li, S., Wolf, J.N., Shen, Q., Bisaro, D.M., and Zhou, X. 2011. Suppression of methylation-mediated transcriptional gene silencing by betaC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog 7:e1002329. (150)Yeh, S.D., J., S.I., Ho, H.M., and Chang, T.F. 1996. Molecular cloning and nucleotide sequence analysis of the S RNA of watermelon silver mottle virus. Acta Hortic 31:244-260. (151)Yeh, S.D., Lin, Y.C., Cheng, Y.H., Jih, C.L., Chen, M.J., and Chen, C.C. 1992. Identification of tomato spotted wilt-like virus on watermelon in Taiwan. Plant Dis 76:835-840. (152)Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. 2005. Methylation as a crucial step in plant microRNA biogenesis. Science 307:932-935. (153)Yu, T.A., Chiang, C.H., Wu, H.W., Li, C.M., Yang, C.F., Chen, J.H., Chen, Y.W., and Yeh, S.D. 2011. Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W. Plant Cell Rep 30:359-371. (154)Zhang, P., Vanderschuren, H., Futterer, J., and Gruissem, W. 2005. Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol J 3:385-397. (155)Zhang, X., Yuan, Y.R., Pei, Y., Lin, S.S., Tuschl, T., Patel, D.J., and Chua, N.H. 2006a. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255-3268. (156)Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Henderson, I.R., Shinn, P., Pellegrini, M., Jacobsen, S.E., and Ecker, J.R. 2006b. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189-1201. (157)Zhou, Y., Rojas, M.R., Park, M.R., Seo, Y.S., Lucas, W.J., and Gilbertson, R.L. 2011. Histone H3 interacts and colocalizes with the nuclear shuttle protein and the movement protein of a geminivirus. J Virol 85:11821-11832. (158)Zrachya, A., Glick, E., Levy, Y., Arazi, T., Citovsky, V., and Gafni, Y. 2007a. Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. Virology 358:159-165. (159)Zrachya, A., Kumar, P.P., Ramakrishnan, U., Levy, Y., Loyter, A., Arazi, T., Lapidot, M., and Gafni, Y. 2007b. Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Res 16:385-398.
摘要: 以蚜蟲傳播之馬鈴薯Y病毒屬(Potyvirus),薊馬傳播番茄斑萎病毒屬(Tospovirus)及粉蝨傳播之雙生病毒科(Geminivirade),在全世界重要的經濟作物上造成相當嚴重的危害;而使用傳統的抗病育種無法有效對抗病毒所引起的病害,在缺乏自然的抗病株系下,使用遺傳工程方式所產生的轉基因抗病植株,則可以有效的控制植物病毒的危害。本研究針對在經濟作物上危害最嚴重的三大病毒屬,分別利用後轉錄基因沉寂策略(post-transcriptional gene silencing, PTGS)或同時以PTGS與轉錄基因沉寂策略(transcriptional gene silencing, TGS)來對抗RNA及DNA病毒。本論文總共分為三個章節,分述如下。 本論文第一章 「前人研究及研究目的」,主要蒐集整理近年來與本研究相關之研究論文及參考文獻,並概述本論文之目的與內容。 本論文第二章 「無篩選標幟且同時對粉蝨傳播DNA雙生病毒及薊馬傳播RNA蕃茄斑萎病毒具有抗性之轉基因菸草」,我們利用轉錄基因沉寂的方式,瞄準病毒的複製起始點及其啟動子,抑制其複製及轉錄作用,建立一個防治Geminiviridae之新方法。利用干擾性微小RNA(siRNA)誘導DNA甲基化的策略(RdDM),將霍香薊黃脈病毒(Ageratum yellow vein virus, AYVV)含有雙向啟動子之基因間區域(intergenic region, IGR)設計成髮夾型RNA結構並將其放置在阿拉伯芥內含子(intron)基因序列中,以產生轉錄沉寂作用(TGS)於轉基因菸草植物中產生抗AYVV之抗性。將此構築結合薊馬所傳播之甜瓜黃斑病毒(MYSV)的不轉錄核鞘蛋白片段,使其誘導轉錄後基因沉寂(PTGS)以產生對甜瓜黃斑病毒的抗性。可抗霍香薊黃脈病毒(AYVV)之轉基因植株,接種甜瓜黃斑病毒(MYSV)來分析其抗病能力,有1株轉基因植株具有完全免疫抗性;而在siRNA分析中,也可測得甜瓜黃斑病毒核鞘蛋白siRNA的表現。本結果顯示,我們可以利用此RdDM及PTGS的新策略同時產生對ssDNA及ssRNA植物病毒產生轉基因抗性,並且可將選擇性標誌基因剔除,可減少生物安全疑慮。 本論文第三章 「同時對粉蝨傳播DNA雙生病毒具有抗性及對薊馬傳播RNA蕃茄斑萎病毒具有廣泛抗性之轉基因菸草」,將AYVV IGR髮夾型RNA結構放置在阿拉伯芥內含子基因序列中,此構築再結合至WSMoV的L基因之高保留性區域誘發轉基因植物產生對蕃茄斑萎病毒屬之廣泛抗性。而在接種的結果測試中,其轉基因植株可以同時廣泛抗西瓜銀斑病毒(WSMoV)及番茄斑點萎凋病毒(Tomato spotted wilt tospovirus, TSWV);而具有抗TSWV的轉基因植株,其也同樣對於WSMoV 與AYVV具有良好之抗病能力。我們可以利用此RdDM及PTGS的策略同時產生對抗ssDNA病毒與廣泛抗ssRNA蕃茄斑萎病毒屬與無血清相關之不同病毒種。 本論文附錄一「利用轉基因產生同時抗兩個蚜蟲傳播及一個薊馬傳播的構築多重抗病毒之轉基因西瓜株系」,針對台灣瓜類上危害最嚴重的矮南瓜黃化嵌紋病毒(Zucchini yellow mosaic virus, ZYMV), 木瓜輪點病毒西瓜型(Papaya ringspot virus type W, PRSV W)及西瓜銀斑病毒(Watermelon silver mottle virus, WSMoV),以遺傳工程方法構築具有ZYMV、PRSV W病毒鞘蛋白及WSMoV病毒核鞘蛋白之轉基因西瓜,誘發轉基因植物產生後轉錄基因沉寂以達到多重抗病之轉基因西瓜株系。總共獲得13個轉基因西瓜株系,其中3個株系可以對ZYMV及PRSV W具有完全的抗性,其在北方點墨法中,偵測不到轉錄的RNA表現,但可以測得三個病毒片段構築的siRNA累積。因此可以證實其是藉由後轉錄基因沉寂所產生的抗性。
Aphids-borne Potyvirus, thrips-borne Tospovirus and Whitefly-borne Begomovirus cause severe damages on crops worldwide. Incorporation of natural resistance gene into commercial cultivars is difficult by conventional breeding and requires many years to eliminate unfavorable characteristics, even if natural resistance source is available. Therefore, using genetic engineering to generate transgenic resistance provides an effective approach to control the diseases caused by plant viruses. In this study, we attempted to use post-transcriptional gene silencing (PTGS) or in combination of PTGS with transcriptional gene silencing (TGS) to generate transgenic resistance to Potyvirus and Tospovirus or concurrent resistance to a ssDNA Begomovirus and a Tospovirus on economic crops. This dissertation is divided into three chapters as described below. Chapter 1,'Literature review and research objectives'describes references are relevant to this study and the objectives of investigations. Chapter 2,'Generation of marker-free transgenic plants concurrently resistant to a DNA geminivirus and a RNA tospovirus' We tried to develop an RNA-directed DNA methylation (RdDM) transgenic system using a hairpin construct (int-hpIGR) of intergenic region (IGR) of Ageratum yellow vein virus (AYVV) residing in an intron of Arabidopsis to mediate TGS in tobacco plants. Furthermore, the int-hpIGR of AYVV IGR coupled with an untranslatable nucleocapsid protein (NP) fragment of Melon yellow spot virus (MYSV) was constructed to induce PTGS against MYSV. The resistant lines showed better resistance to AYVV, when challenged with MYSV, one of the AYVV-resistant lines was immune to MYSV infection, in which the transgenic NP transcript was silenced and the corresponding siRNAs were detected. Hence, we provide a novel way for concurrent control of noxious DNA and RNA viruses by TGS and PTGS with less biosafety concerns. Chapter 3,'Generation transgenic tobacco plants conferring resistance to a DNA geminivirus and broad-spectrum resistance to distinct RNA tospovirus species' Using the int-hpIGR of AYVV IGR coupled with an untranslatable antisense large (L) gene fragment containing the highly conserved RNA-dependent RNA polymerase (RdRp) region of WSMoV was created to induce PTGS against tospoviruses. When challenged with WSMoV and Tomato spotted wilt virus (TSWV), the TSWV-resistant lines were also highly resistant to WSMoV and AYVV. Hence, our novel approach provides a valuable way for concurrent control of ssDNA AYVV and broad-spectrum resistance to different distinct (-)ssRNA tospoviruses. Appendix I,'Generation of transgenic watermelon lines with resistance to two aphid-borne viruses and one thrips-borne tospovirus'thrips-borne Watermelon silver mottle virus (WSMoV), and aphid-borne Zucchini yellow mosaic virus (ZYMV) and Papaya ringspot virus type W (PRSV-W) are major limiting factors for watermelon production worldwide. An untranslatable construct containing truncated ZYMV coat protein (CP), PRSV-W CP and WSMoV nucleocapsid protein (NP) genes by genetic engineering to generation transgenic watermelon to control these viruses. A total of 13 transgenic watermelon lines were obtained. Among them, three transgenic lines conferred immunity to ZYMV and PRSV-W, of which the transgenic transcripts were not detected by northern blotting, but the accumulation of small interfering RNAs (siRNAs) were detected, indicating that the transgenic resistance was mediated by PTGS.
URI: http://hdl.handle.net/11455/89337
文章公開時間: 2017-08-31
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.