Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89339
標題: 瓜類細菌性果斑病菌新選擇性培養基之研發
Development of a New Selective Medium for Acidovorax citrulli
作者: Yu-Jean Chen
陳鈺楨
關鍵字: Acidovorax citrulli
瓜類細菌性果斑病
選擇性培養基
Bacterial fruit blotch of cucurbits
Acidovorax citrulli
smeiselective medium
引用: Bahar, O., Efrat, M., Hadar, E., Dutta, B., Walcott, R. R. and Burdman, S. 2008. New subspecies-specific polymerase chain reaction-based assay for the detection of Acidovorax avenae subsp. citrulli. Plant Pathol. 57:754-763. Burdman, S. and Walcott, R. R. 2012. Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Mol. Plant Pathol. 13:805-815. Chen, M. S. 2003. Genetic diversity of Acidovorax avenae subsp. citrulli in Taiwan. Master thesis. Department of Plant Pathology, National Chung Hsing University. Taichung, Taiwan. Cheng, A. H. and Huang, T. C. 1998. Bacterial fruit blotch on melon, and bitter gourd caused by Acidovorax avenae subsp. citrulli. Plant Pathology Bulletin 7:216. Chou, Y. C. 2009. The development of detection techniques of Acidovorax avenae subsp. citrulli. Master thesis. Department of Plant Pathology, National Chung Hsing University. Taichung, Taiwan. Cuppels, D. and Kelman, A. 1974. Evaluation of selective media for isolation of soft-rot bacteria from soil and plant tissue. Phytopathology. 64:468-475. Deng, W. L., Huang, T. C. and Tsai, Y. C. 2010. First report of Acidovorax avenae subsp. citrulli as the causal agent of bacterial leaf blight of betelvine in Taiwan. Plant Dis. 94:1065-1065. Dutta, B., Avci, U., Hahn, M. G. and Walcott, R. R. 2012. Location of Acidovorax citrulli in infested watermelon seeds is influenced by the pathway of bacterial invasion. Phytopathol. 102:461-468. Dutta, B., Scherm, H., Gitaitis, R. D. and Walcott, R. R. 2012. Acidovorax citrulli seed inoculum load affects seedling transmission and spread of bacterial fruit blotch of watermelon under greenhouse conditions. Plant Dis. 96:705-711. Feng, J. J., Li, J. Q., Walcott, R. R., Zhang, G. M., Luo, L. X., Kang, L., Zheng, Y. and Schaad, N. W. 2013. Advances in detection of Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. Seed Sci. Technol. 41:1-15. Gitaitis, R. D. 1993. Development of a seedborne assay for watermelon fruit blotch. Proc. ISTA Plant Dis. Com. Symp. Seed Health Test., 1st, Ottawa, Can. Aug. 9–11. Gitaitis, R. D. and Walcott, R. R. 2007. The epidemiology and management of seedborne bacterial diseases. Annu. Rev. Phytopathol. 45:371-397. Gitaitis, R. D., Chang, C. J., Sijam, K. and Dowler, C. C. 1991. A differential medium for semiselective isolation of Xanthomonas campestris pv. vesicatoria and other cellulolytic xanthomonads from various natural sources. Plant Dis.75:1274–78. Hopkins, D. L, Thompson, C. M., Hilgren, J. and Lovic, B. 2003. Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seedborne diseases of watermelon. Plant Dis. 87:1495-1499. Isakeit, T., Black, M. C., Barnes, L. W. and Jones, J. B. 1997. First report of infection of honeydew with Acidovorax avenae subsp. citrulli. Plant Dis. 81:694. Isakeit, T., Black, M. C. and Jones, J. B. 1998. Natural infection of citronmelon with Acidovorax avenae subsp. citrulli. Plant Dis. 82:351. Kawanishi, T., Shiraishi, T., Okano, Y., Sugawara, K., Hashimoto, M., Maejima, K., Komatsu, K., Kakizawa S., Yamaji, Y. and Hamamoto, H. 2011. New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints. PloS one 6:e16512. Latin, R. X. and Hopkins, D. L. 1995. Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality. Plant Dis. 79: 761-765. Latin, R. X. and Rane, K. K. 1990. Bacterial fruit blotch of watermelon in Indiana. Plant Dis. 74:331. Martin, H. L. and O'Brien, R. G. 1999. First report of Acidovorax avenae subsp. citrulli as a pathogen of cucumber. Plant Dis. 83:965. Munkvold, G. P. 2009. Seed pathology progress in academia and industry. Annu. Rev. Phytopathol. 47:285-311. Shirakawa, T., Aizawa, M., Komiya, Y. and Abiko, K. 2000. Development of semiselective medium for isolation and detection of Acidovorax avenae subsp. citrulli from seeds and plant materials. Jpn. J. Phytopathol. 66:132. Sakthivel, N., Mortensen, C. N. and Mathur, S. B. 2001. Detection of Xanthomonas oryzae pv. oryzae in artificially inoculated and naturally infected rice seeds and plants by molecular techniques. Appl. Microbiol. Biotechnol. 56:435-41. Schaad, N. W., Cheong, S. S., Tamaki, S., Hatziloukas, E. and Panopoulos, N. J. 1995. A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology 85:243-248. Schaad, N. W., Postnikova, E., Sechler, A., Claflin, L. E., Vidaver, A. K., Jones, J. B., Agarkova, I., Ignatov, A., Dickstein, E. and Ramundo, B. A. 2008. Reclassification of subspecies of Acidovorax avenae as A. avenae (Manns 1905) emend., A. cattleyae (Pavarino 1911) comb. nov., A. citrulli (Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov. Syst. App. Microbiol. 31: 434-446. Schaad, N. W. and Sechler, A. 1999. An improved semiselective agar medium for Acidovorax avenae subsp. citrulli. Phytopathology 89: S68. Schaad, N. W., Sowell, G., Goth, R. W., Colwell, R. R. and Webb, R. E. 1978. Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov. Int. J. Syst. Bacteriol. 28:117-125. Somodi, G. C., Jones, J. B., Hopkins, D. L., Stall, R. E., Kucharek, T. A., Hodge, N. C. and Watterson, J. C. 1991. Occurrence of a bacterial watermelon fruit blotch in Florida. Plant Dis. 75:1053-1056. Song, W. Y., Kang, M. H. and Kim, H. M. 2000. A new selective medium for detecting Acidovorax avenae subsp. avenae in rice seeds. Plant Pathol. J. 16 : 236-241. Song, W. Y., Kim, H. M., Hwang, C. Y. and Schaad, N. W. 2004. Detection of Acidovorax avenae ssp. avenae in rice seeds using BIO-PCR. J. Phytopathol. 152:667-676. Tang, C. J. 1997. Studies on bacterial fruit blotch of watermelon caused by Acidovorax aveane subsp. cirtulli. Department of Plant Pathology, National Chung Hsing University. Taichung, Taiwan. Walcott, R. R., Fessehaie, A. and Castro, A. C. 2004. Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts. J. Phytopathol. 152: 277-285. Walcott, R. R. and Gitaitis, R. D. 2000. Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Dis. 84:470-474. Walcott, R. R., Gitaitis, R. D. and Castro, A. C. 2003. Role of blossoms in watermelon seed infestations by Acidovorax avenae subsp. citrulli. Phytopathology93:528-534. Wall, G. C. and Santos, V. M. 1988. A new bacterial disease on watermelon in the Mariana Islands. Phytopathology 78: 1605. Webb, R.E. and Goth, R.W. 1965. A seedborne bacterium isolated from watermelon. Plant Dis. 49:818-821. Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K. and Ley, J. D. 1992. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Bacteriol. 42:107-119. Yang, W. J. 2001. Detection of Acidovorax avenae subsp. citrulli in watermelon and melon seed. Department of Plant Pathology, National Chung Hsing University. Taichung, Taiwan. Zhao, Y., Damicone, J. P., and Bender, C. L. 2002. Detection, survival, and sources of inoculum for bacterial diseases of leafy crucifers in Oklahoma. Plant Dis. 86: 883-888. Zhao, T., Feng, J., Sechler, A., Randhawa, P., Li, J. and Schaad, N. W. 2009. An improved assay for detection of Acidovorax citrulli in watermelon and melon seed. Seed Sci. and Technol. 37: 337-349. Zhao, T., Sun, F., Wang, B. and Hui, W. 2001. Pathogen identification of Hami melon bacterial fruit blotch (in Chinese). Acta Phytopathologica Sinica 31: 357-364.
摘要: 瓜類細菌性果斑病菌 (Acidovorax citrulli) 為重要的植物病原細菌,可引起 瓜類細菌性果斑病 (Bacterial fruit blotch of cucurbits),造成瓜類作物產量嚴重損 失。此病菌可經由種子傳播,為重要的植物檢疫病原細菌。開發其高度專一及靈 敏度之檢測技術為重要之項目。選擇性培養基為瓜類細菌性果斑病菌常被使用之 檢測技術,此方法之操作較血清學及分子檢測技術簡單,且成本花費較低。目前 常被使用之瓜類細菌性果斑病菌之半選擇性培養基有 AacSM、 WFB68 及 WFB68MA。然而,部分台灣瓜類細菌性果斑病菌株於此些培養基上生長不良, 其中為改進 AacSM 選擇性培養基對台灣瓜類細菌性果斑病菌之檢測能力,本研 究以 succinic acid 、 L-asparagine 、 L-aspartic acid 、 L-glutamic acid 及 L-pyroglutamic acid 等五種氮素源分別取代 AacSM 培養基中之 ammonium adipate,並去除其中碳素源酵母萃取物及微量無機鹽類進行測試。結果顯示,添 加 L-glutamic acid 之 AacG 培養基較其它之培養基可促進台灣瓜類細菌性呆 斑病菌菌株之生長。以 1% 帶菌種子進行果斑病菌之回收,並比較 Aac31、 Aac102 及 Aac159 三菌株分別以 AacSM、WFB68MA 與 AacG 三種培養基作 比較。結果顯示,Aac31、Aac102 及 Aac159 菌株於 AacG 培養基中之回收率 為 45~100%﹔Aac31 菌株於 AacSM 及 WFB68MA 培養基之回收率則分別為 10% 及 100%﹔而 Aac102 及 159 菌株於此三種培養基之回收率則皆為 0%, 顯示菌株間其有差異性。進一步以 0.5% 及 0.2% 帶菌種子檢測果斑病菌之回 收率,使用 AacG 培養基回收果斑病菌 Aac31 菌株之效率分別為 246.97% 及 46.34%,非目標菌回收率為 5.22% 及 2.8%,與 AacSM 及 WFB68MA 培養基 相比能有效抑制非目標菌生長,且其明顯提高果斑病菌之檢測效率。根據以上結 呆,本研究所開發之 AacG 選擇性培養基可明顯提高瓜類細菌性果斑病菌之回 收率,有效改善台灣瓜類細菌性果斑病生長不良之情形。
Bacterial fruit blotch of cucurbits, caused by Acidovorax citrulli (Ac) is a devastating disease of cucurbit crops. Ac, seed-borned pathogen, is a quarantine pest to avoid pecuniary losses. Hence, it is important to develop a rapid, accurate detection technique for this pathogen. The commonly used method is a selective medium to incubate Ac which is easier to use and less costly than the immunological or molecular methods. The semiselective media, e.g. AacSM, WFB68 and WFB68MA are currently used to detect Ac. However, the sensitivity and selectivity of the these media were not suitable for Ac strains in Taiwan. Therefore, the objective of this study is to modify the formula of AacSM medium by allocating the composition of carbon and nitrogen sources. In this study, five nitrogen sources including succinic acid, L-asparagine, L-aspartic acid, L-glutamic acid and L-pyroglutamic acid were tested, respectively, and the yeast extract and inorganic salts were also tested to remove from AacSM. These results were showed that the developed AacG medium which adding L-glutamic acid can enhance the growth of the tested Ac strains than the other semiselective media. Furthermore, comparison of the recovery of A. citrulli from the seed infestation rate at 1% on AacSM, WFB68MA and AacG media, the recovery of Ac strains Aac31, Aac102 and Aac159 on AacG medium was 45%-100%, but Aac102 and Aac159 could not recover on AacSM or WFB68MA. When the seed infestation rates were 0.5% or 0.2%, the recovery of A. citrulli from on AacG media was higher than that of AacSM and WFN68MA media. The results reveal that the recovery of Ac on AacG semiselective medium are significantly improved growth of Ac strains isolated from Taiwan, and also reduced the growth saprophytic bacteria present in seed lots. In future, it is potential for that the AacG medium could apply the process of seed detection of Ac.
URI: http://hdl.handle.net/11455/89339
文章公開時間: 2015-07-27
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.