請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/89349
標題: 茶與百香果炭疽病之拮抗微生物鑑定及其於病害防治應用潛力
Identification of antagonistic microorganisms against anthracnose on tea and passion fruit and their potential application in disease control
作者: Yia-Han Lin
關鍵字: 炭疽病
引用: 行政院農業委員會農業藥物毒物試驗所-植物保護手冊。2015。http://www.tactri.gov.tw/wSite/ct?xItem=3691&ctNode=333&mp=11 李文立、林榮貴。2008。百香果的栽培管理。行政院農業委員會農業試驗所技術服務季刊 74: 4-8。 李文立、王德男。2007。百香果栽培管理要點。園藝之友 119: 18-26。 李雅惠。2002。拮抗菌桿菌屬 (Bacillus spp.) 之分離、培養與拮抗活性之改進以及病害防治之應用。國立中興大學植物病理學系碩士論文。79頁。 李臺強。2008。茶樹育種快速選拔指標鑑定方法之研究。臺灣茶葉研究彙報 27: 1-14。 邱燕欣。2004。拮抗性枯草桿菌Bacillus subtilis WG6-14菌株於柑橘潰瘍病防治應用。國立中興大學植物病理學系碩士論文。92頁。 徐世典、張東柱、張清安、蔡進來、蔡東篡。2002。台灣植物病害名彙。第四版,44、194頁。中華民國植物病理學會:台中。 陳右人。1995。本省主要茶樹品種介紹。茶葉專訊 11: 1-2。 張育森、鄭正勇。1995。植物生長調節劑對百香果生長及花芽形成之影響。中國園藝 41: 251-260。 費雯綺、王喻其、陳富祥、林曉民、李貽華。2010。植保手冊。初版,685頁。行政院農委會農業藥物毒物試驗所:台北。 曾方明。2004。植物保護圖鑑系列4-茶樹保護。郭克忠、鄒慧娟、施季汎編。初版,91-93頁。行政院動植物防疫檢疫局:台北。 鄭櫻惠、鄧汀欽。2014。無病毒健康種苗對百香果產業發展之重要性及未來展望。植物種苗生技 37: 63-71。 賴文瑞。2003。鏈黴菌Streptomyces griseobruuneus S3菌株做為植物真菌性病害防治應用生物製劑之發展。國立中興大學植物病理學系碩士論文。114頁。 蕭素女。2002。茶園常見病蟲害防治手冊。第三版,1頁。行政院農業委員會茶業改良場:桃園。 Aizawa, S., Akutsu, H., Satomi, T., Nagatsu, T., Taguchi, R. and Seino, A. 1979. Capsimycin, a new antibiotic. I. production, isolation and properties. J. Antibiot. 32: 193-196. Aldesuquy, H. S., Mansour, F. A. and Abo-Hamed, S. A. 1998. Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol. 43: 465-470. Baker, K. F. and Cook, R. J. 1974. Biological Control of Plant Pathogen. W. H. Freeman, San Francisco, CA. 433 pp. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M. and Parr‐Dobrzanski, B. 2002. The strobilurin fungicides. Pest Manag. Sci. 58: 649-662. Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., Borisov, A. Y., Tikhonovich, I. A., Kluge, C. and Preisfeld, A. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47: 642-652. Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350. Bibb, M. J. 2005. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8: 208-215. Carbone, I. and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia: 553-556. Chakraborty, U., Chakraborty, B. and Basnet, M. 2006. Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J. Basic Microbiol. 46: 186-195. Chen, C. and Dickman, M. B. 2005. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc. Natl. Acad. Sci. U. S. A. 102: 3459-3464. Chen, T. M. and Chen, S. F. 1982. Disease of tea and their controls in the people's republic of China. Plant Dis. 66: 961-965. Conn, V. M., Walker, A. R. and Franco, C. M. M. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol. Plant Microbe Interact. 21: 208-218. Cox, K. D., Quello, K., Deford, R. J. and Beckerman, J. L. 2009. A rapid method to quantify fungicide sensitivity in the brown rot pathogen Monilinia fructicola. Plant Dis. 93: 328-331. Damm, U., Cannon, P. F., Woudenberg, J. H. C., Johnston, P. R., Weir, B. S., Tan, Y. P., Shivas, R. G. and Crous, P. W. 2012. The Colletotrichum boninense species complex. Stud. Mycol. 73: 1-36. de Lima Procópio, R. E., da Silva, I. R., Martins, M. K., de Azevedo, J. L. and de Araújo, J. M. 2012. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 16: 466-471. Drobniewski, F. A. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6: 324-338. Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171: 1-9. Fiddaman, P. and Rossall, S. 1993. The production of antifungal volatiles by Bacillus subtilis. J. Appl. Microbiol. 74: 119-126. Fischer, I. H. and Rezende, J. A. 2008. Diseases of passion flower (Passiflora spp.). Pest Tech. 2: 1-19. Freitas, D. B., Reis, M. P., Lima-Bittencourt, C. I., Costa, P. S., Assis, P. S., Chartone-Souza, E. and Nascimento, A. M. A. 2008. Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste. BMC Res. Notes. 1: 92. Gomes, R. C., Semêdo, L. T., Soares, R. M., Alviano, C. S., Linhares, L. F. and Coelho, R. R. 2000. Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Lett. Appl. Microbiol. 30: 146-150. Hsu, S. C. and Lockwood, J. L. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Microbiol. 29: 422-426. Huang, T. P., Tzeng, D. D., Wong, A. C. L., Chen, C. H., Lu, K. M., Lee, Y. H., Huang, W. D., Hwang, B. F. and Tzeng, K. C. 2012. DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PloS one 7: e42124. Hwang, B. K., Lee, J. Y., Kim, B. S. and Moon, S. S. 1996. Isolation, structure elucidation, and antifungal activity of a manumycin-type antibiotic from Streptomyces flaveus. J. Agric. Food Chem. 44: 3653-3657. Júnior, H. J. T., Fischer, I. H., Camara, M. P. S. and Júnior, N. S. M. 2010. First report of Colletotrichum boninense infecting yellow passion fruit (Passiflora edulis f. flavicarpa) in Brazil. Australas. Plant Dis. Notes 5: 70-72. Jarvis, B., Shannon, P. and Yasmin, S. 1983. Involvement of polyamines with adventitious root development in stem cuttings of mung bean. Plant Cell Physiol. 24: 677-683. Jog, R., Nareshkumar, G. and Rajkumar, S. 2012. Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J. Appl. Microbiol. 113: 1154-1164. Kado, C. H. and Heskett, M. G. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60: 969-976. Kim, P. I. and Chung, K. C. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234: 177-183. Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886. Lambert, D. H. and Loria, R. 1989. Streptomyces scabies sp. nov., nom. rev. Int. J. Syst. Bacteriol. 39: 387-392. Lee, S. Y., Lee, Y. S., Hong, S. H. and Kim, K. Y. 2012. Biocontrol of anthracnose in pepper using chitinase, β-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. J. Microbiol. Biotechnol. 22: 1359-1366. Logan, N. and Berkeley, R. 1984. Identification of Bacillus strains using the API system. J. Gen. Microbiol. 130: 1871-1882. Ly, J. D., Grubb, D. R. and Lawen, A. 2003. The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis 8: 115-128. Manulis, S., Shafrir, H., Epstein, E., Lichter, A. and Barash, I. 1994. Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiology 140: 1045-1050. Mayak, S., Tirosh, T. and Glick, B. 1999. Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J. Plant Growth Regul. 18: 49-53. Mayak, S., Tirosh, T. and Glick, B. R. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166: 525-530. Mondal, T. K., Bhattacharya, A., Laxmikumaran, M. and Ahuja, P. S. 2004. Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tissue Organ Cult. 76: 195-254. Nassar, A. H., El-Tarabily, K. A. and Sivasithamparam, K. 2003. Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus. J. Plant. Growth. Regul. 40: 97-106. Neeno-Eckwall, E. C., Kinkel, L. L. and Schottel, J. L. 2001. Competition and antibiosis in the biological control of potato scab. Can. J. Microbiol. 47: 332-340. Nguyen, X. H., Naing, K. W., Lee, Y. S., Tindwa, H., Lee, G. H., Jeong, B. K., Ro, H. M., Kim, S. J., Jung, W. J. and Kim, K. Y. 2012. Biocontrol potential of Streptomyces griseus H7602 against root rot disease (Phytophthora capsici) in pepper. Plant Pathol. J. 28: 282-289. O'donnell, A., Norris, J., Berkeley, R., Claus, D., Kaneko, T., Logan, N. and Nozaki, R. 1980. Characterization of Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis, and Bacillus amyloliquefaciens by pyrolysis gas-liquid chromatography, deoxyribonucleic acid-deoxyribonucleic acid hybridization, biochemical tests, and API systems. Int. J. Syst. Bacteriol. 30: 448-459. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in microbiology 16: 115-125. Palaniyandi, S. A., Yang, S. H., Cheng, J. H., Meng, L. and Suh, J. W. 2011. Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. J. Appl. Microbiol. 111: 443-455. Palaniyandi, S. A., Yang, S. H. and Suh, J. W. 2013. Extracellular proteases from Streptomyces phaeopurpureus ExPro138 inhibit spore adhesion, germination and appressorium formation in Colletotrichum coccodes. J. Appl. Microbiol. 115: 207-217. Palaniyandi, S. A., Yang, S. H., Zhang, L. and Suh, J.-W. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97: 9621-9636. Podile, A. and Prakash, A. 1996. Lysis and biological control of Aspergillus niger by Bacillus subtilis AF 1. Can. J. Microbiol. 42: 533-538. Priest, F., Goodfellow, M., Shute, L. and Berkeley, R. 1987. Bacillus amyloliquefaciens sp. nov., nom. rev. Int. J. Syst. Bacteriol. 37: 69-71. Qi, G., Zhu, F., Du, P., Yang, X., Qiu, D., Yu, Z., Chen, J. and Zhao, X. 2010. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 31: 1978-1986. Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M. and Chen, L. B. 1995. Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol. 260: 406-417. Ruangwong, O., Chang, C. I., Lamine, S. A. and Liang, W.-J. 2012. Identification of antifungal compound produced by Bacillus subtilis LB5 with ability to control anthracnose disease caused by Colletotrichum gloeosporioides. Afr. J. Microbiol. Res. 6: 3732-3738. Rungin, S., Indananda, C., Suttiviriya, P., Kruasuwan, W., Jaemsaeng, R. and Thamchaipenet, A. 2012. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102: 463-472. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100: 4927-4932. Ryu, H., Park, H., Suh, D.-S., Jung, G. H., Park, K. and Lee, B. D. 2014. Biological control of Colletotrichum panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1. J. Ginseng. Res. 38: 215-219. Sailaja, P. R., Podile, A. R. and Reddanna, P. 1998. Biocontrol strain of Bacillus subtilis AF 1 rapidly induces lipoxygenase in groundnut (Arachis hypogaea L.) compared to crown rot pathogen Aspergillus niger. Eur. J. Plant Pathol. 104: 125-132. Salamitou, S., Ramisse, F., Brehélin, M., Bourguet, D., Gilois, N., Gominet, M., Hernandez, E. and Lereclus, D. 2000. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146: 2825-2832. Senghor, A. L., Liang, W. J. and Ho, W. C. 2007. Integrated control of Colletotrichum gloeosporioides on mango fruit in Taiwan by the combination of Bacillus subtilis and fruit bagging. Biocontrol Sci. Technol. 17: 865-870. Shi, X., Li, B., Qin, G. and Tian, S. 2012. Mechanism of antifungal action of borate against Colletotrichum gloeosporioides related to mitochondrial degradation in spores. Postharvest Biol. Technol. 67: 138-143. Shishido, M., Breuil, C. and Chanway, C. P. 1999. Endophytic colonization of spruce by plant growth-promoting rhizobacteria. FEMS Microbiol. Ecol. 29: 191-196. Shishido, M., Massicotte, H. and Chanway, C. 1996. Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann. Bot. 77: 433-442. Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J. and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. J. Appl. Environ. Microbiol. 60: 2023-2030. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. Su, J. Q., Wang, G. H. and Yang, M. H. 2010. Mixed culture of endophytic fungi isolated from Camellia sinensis enhancing the antagonistic on plant pathogenic fungi. Mycosystema 29: 753-795. Taechowisan, T., Chuaychot, N., Chanaphat, S., Wanbanjob, A. and Tantiwachwutikul, P. 2009. Antagonistic effects of Streptomyces sp. SRM1 on Colletotrichum musae. Biotechnology 8: 86-92. Taechowisan, T., Lu, C., Shen, Y. and Lumyong, S. 2005. Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151: 1691-1695. Taechowisan, T., Peberdy, J. F. and Lumyong, S. 2003. Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J. Microbiol. Biotechnol. 19: 381-385. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. Tang, Q., Bie, X., Lu, Z., Lv, F., Tao, Y. and Qu, X. 2014. Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. J. Microbiol. 52: 675-680. Tokala, R. K., Strap, J. L., Jung, C. M., Crawford, D. L., Salove, M. H., Deobald, L. A., Bailey, J. F. and Morra, M. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). J. Appl. Environ. Microbiol. 68: 2161-2171. Tu, J. 1988. Antibiosis of Streptomyces griseus against Colletotrichum lindemuthianum. J. Phytopathol. 121: 97-102. Turner, J. and Backman, P. 1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75: 347-353. Udayashankar, A., Nayaka, S. C., Reddy, M. and Srinivas, C. 2011. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol. Control. 59: 114-122. Versalovic, J., Schneider, M., De Bruijn, F. J. and Lupski, J. R. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Meth. Mol. Cell. Biol. 5: 25-40. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. P. 315-322. In: PCR Protocols: a Guide to Methods and Applications. M. A. Innis, D. V. Delfand, J. J. Sninsky, and T. J. White, eds. Academic Press, New York. 482pp. Yang, Y., Cai, L., Yu, Z., Liu, Z. and Hyde, K. D. 2011. Colletotrichum species on Orchidaceae in southwest China. Cryptogam. Mycol. 32: 229-253.
摘要: 茶葉與百香果在國際上為重要大眾飲用作物之一,由Colletotrichum spp.所引起的茶炭疽病 (brown blight of tea) 以及百香果炭疽病 (anthracnose of passion fruit) 是茶樹與百香果上重要真菌病害之一,危害嚴重時會造成產量損失。目前防治方法是以施用化學藥劑為主,然而不當使用化學藥劑的結果會造成許多抗藥性菌株的出現以及對人類和環境造成負面的影響,所以生物防治是一個良好的替代性防治方法,而Bacillus 屬以及 Streptomyces屬之菌株已知為常見促進植物生長之根圈有益微生物,不僅可以促進植物生長,甚至具有抗生活性及誘導系統性防禦反應等生物防治潛力。因此我的研究目的為篩選鑑定來自田間之有益微生物,並探討其防治茶及百香果炭疽病以及促進茶及百香果幼苗生長之應用潛力,並探討其防治之機制。自南投、高雄及台中根圈土壤中篩選分離出之菌株Bacillus sp. AM4-1、CA-1、151B1以及151B4由生理生化測試、Biolog System III、16S rRNA及核酸多型性圖譜分析鑑定均為Bacillus subtilis;Streptomyces sp. UN3S2、PES4經由16S rRNA只能初步鑑定為Streptomyces sp.,上述菌株與生理與分子病理研究室提供之菌株B. subtilis TKS1-1和S. griseobrunneus S3共八株菌株,對茶炭疽病原菌C. gloeosporioides TE04菌絲生長及孢子發芽有較優異的抑制效果。且施用B. subtilis 151B1培養液於百香果扦插苗上,在不論接種炭疽病菌與否之條件下均可提升其存活率。此外,處理B. subtilis TKS1-1及B. subtilis 151B1培養濾液於百香果炭疽病菌C. karstii N-PF1孢子懸浮液中,會造成其細胞凋亡且染色質無法凝聚之現象,亦會降低炭疽病原真菌粒線體膜潛勢以及呼吸作用能量代謝之現象,推測其培養濾液可能與誘導造成細胞程序性死亡有關。此外C. karstii N-PF1孢子懸浮液處理B. subtilis TKS1-1及B. subtilis 151B1培養濾液12及24小時之後,發現C. karstii N-PF1菌絲有畸形生長或孢子未發芽之現象。在B. subtilis TKS1-1, B. subtilis151B1, S. griseobrunneus S3和Streptomyces sp. PES4四株菌株中,以B. subtilis 151B1生長促進能力最佳,施用其培養液於青心烏龍扦插苗生長上處理八周後,相較其他處理組其葉長及葉厚可增加約2倍,在百香果幼苗上可增加新葉數約2.6倍、節數增加約2倍、葉寬約2倍及在植株莖鮮種約1.5倍。Streptomyces sp. PES4 則是施用其培養液於青心烏龍扦插苗生長上處理八周後,相較其他處理組其株高增加約2倍。總結上述試驗結果,拮抗微生物B. subtilis 151B1對於炭疽病菌具有優異的拮抗效果,且施用其培養液於百香果扦插苗上,在不論接種炭疽病菌與否之條件下均可提升其存活率,且對茶及百香果幼苗具有生長促進之現象,推測B. subtilis 151B1為具有生物防治潛力之菌株,此外我們結果亦發現B. subtilis TKS1-1及B. subtilis151B1之培養濾液可能會誘導炭疽病菌細胞程序性死亡,導致其菌絲畸形生長及抑制孢子發芽之能力。
Tea (Camellia sinensis) and passion fruit (Passiflora edulis) are the most consumed beverages in the world. Brown blight of tea and anthracnose of passion fruit caused by Colletotrichum gloeosporioides are both devastating diseases hindering their production. Extensive use of fungicides has led to serious development of resistance in pathogen populations and caused negative consequences for human health and the environment. Biological control has been taken as an alternative to disease control by synthetic pesticide. Bacillus and Streptomyces species are representative genera of plant growth promoting rhizobacteria which not only promote plant growth but could also act as biocontrol agents by producing antibiotics, triggering induced systemic resistance. The main objectives of my study are to select and identify native antagonistic microorganisms against pathogens of brown blight of tea and anthracnose of passion fruit, and to investigate their potential application in disease control and growth promotion and to investigate the putative control mechanisms. Among seventy isolates which were isolated from rhizospere soils and collected from Nantou county, Kaohsiung city and Taichung city in this study, strains AM4-1, CA-1, 151B1 and 151B4 were classified as Bacillus subtilis group based on the analysis of 16S rRNA sequences, DNA polymorphism, physiology and biochemistry tests and the analysis by Biolog System III. Strains UN3S2 and PES4 were classified as Streptomyces species based on the analysis of 16S rRNA sequences. Eight strains including B. subtilis TKS1-1, Streptomyces griseobrunneus S3 and strains B. subtilis AM4-1, CA-1, 151B1, 151B4 and Streptomyces sp. strain UN3S2 and PES4 showed antagonistic effect on mycelial growth and conidial germination of C. gloeosporioides TE04. Application of B. subtilis 151B1 culture broth increased survival rates of passion fruit cuttings with or without the challenging of anthracnose fungi. Culture filtrates from strains 151B1 and TKS1-1 resulted in cell death and chromatin fragmentation of C. karstii N-PF1. The treatment of culture filtrates from strains 151B1 and TKS1-1 were also found to cause reduction in mitochondrial membrane potential and energy metabolism of Colletotrichum karstii N-PF1 compared to the medium control, suggesting its function in triggering apoptotic-like cell death. In addition, the aberrant hyphal morphology, non germinated conidia were observed for C. karstii N-PF1 on leaves of passion fruit while 12hrs and 24hrs post-challenging with the culture filtrates. Among four strains, TKS1-1, 151B1, S3 and PES4, B. subtilis 151B1 was found to show the superior enhance the leaf length and thickness (for 2-fold increase) of Chin-Shin Oolong seedlings 8 weeks post-treatment, and in numbers of leaves (2.6-fold increase), nodes (2-fold increase), leaf width (2-fold increase), and shoot fresh weight (1.5-fold increase) of passion fruit seedlings. In addition, Streptomyces sp. PES4 showed the greatest effect on promotion of plant height (2-fold increase) of Chin-Shin Oolong seedlings compared to the other treatments. In conclusion, B. subtilis strain 151B1 showed superior antagonistic activity against anthracnose fungi and enhancing the survival rates of passion fruit cuttings and with or without challenging with anthracnose fungi, and exhibited the greatest growth promotion of seedlings of tea and passion fruit. Suggesting it's potential as a biocontrol agent. Our findings also suggest that culture filtrates of B. subtilis TKS1-1 and 151B1 caused aberrant hyphal morphology and inhibit germination of anthracnose fungi which may part attribute to their ability in triggering program cell death of fungi.
URI: http://hdl.handle.net/11455/89349
文章公開時間: 10000-01-01

檔案 描述 大小格式 
nchu-104-7102035011-1.pdf8.14 MBAdobe PDF 請求副本

在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。