Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89355
標題: 透過篩選台灣T-DNA插入水稻突變庫鑑別水稻對腐黴(Pythium)抗性或感性基因
Identification of rice genes associated with susceptibility or resistance to Pythium through the screening of Taiwan Rice Insertional Mutant library
作者: Zun-Jie Syu
許尊傑
關鍵字: 水稻
腐黴
篩選
抗病
感病
TRIM library
Screen
Resistant
Susceptibility
引用: 卓緯玄、陳治官、賴明信、顏信沐、曾東海、顏宏真。2008。水稻秧苗期耐鹽性之篩選技術。台灣農業研究 57, 193-204。 倪蕙芳、許淑麗、陳瑞祥、楊宏仁。2010。台灣地區土壤中木黴菌株對植物病原真菌拮抗能力之篩選。台灣農業研究 59, 29-41。 許迪川。2008。培育水稻秧苗的方法。臺東區農業改良場技術專刊 4, 1-18。 許晴情。2013。水稻徒長病菌:開發鑑別性培養基、建立病害評估平台及探討土壤接種源之角色。中興大學植物病理學系碩士論文, 9-11。 張義璋。1995。植物保護。台灣農家要覽農作篇 (三) 35-49。 黃益田。2003。植物保護圖鑑系列8。水稻保護 (上冊) 13-30。 廖大經、陳隆澤。2011。2003至2008年臺灣育成水稻品種 (系) 對稻熱病抗性之探討。台灣農業研究 60, 279-292。 鄭清煥。 2003。 植物保護圖鑑系列8。 水稻保護 (上冊) 1-12。 謝麗娟、張義璋、謝廷芳。2005。水稻白葉枯病抗病檢定方法之改良。台灣農業研究 54, 15-22。 Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., Shinn, P., Stevenson, D. K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C. C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D. E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W. L., Berry, C. C., and Ecker, J. R. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657. Banniza, S, and Holderness, M. (2001) Pathogen biology and diversity. In: Sreenivasaprasad S, Johnson R (eds) Major fungal diseases of rice: recent advances. Kluwer Academic Publishers, The Netherlands. 201–211. Buchanan, M., Burton, R. A., Dhugga, K. S., Rafalski, A. J., Tingey, S. V., Shirley, N. J., and Fincher, G. B. (2012) Endo-(1,4)-beta-glucanase gene families in the grasses: temporal and spatial co-transcription of orthologous genes. BioMed Cent 12, 235-253. Bytebier, B., Deboeck, F., De Greve, H., Montagu, MV, and Hernalsteens, JP. (1987) T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc Natl Acad Sci 84, 5345-5349. Chun, S. C., and Schneider, R. W. (1998) Sites of infection by Pythium species in rice seedlings and effects of plant age and water depth on disease development. Phytopathol 88, 1255-1261. Cosgrove, D. J. (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38, 109-124. De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I. R., Vera-Cruz, C., Kikuchi, S., and Hofte, M. (2012) Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiol 158, 1833-1846. Del Campillo, E., Abdel-Aziz, A., Crawford, D., and Patterson, S. E. (2004) Root cap specific expression of an endo-β-1,4-D-glucanase (cellulase): a new marker to study root development in Arabidopsis. Plant Mol Biol 56, 309-323 Dissanayake, N., Hoy, J. W., and Griffin, J. L. (1998) Herbicide effects onsugar- cane growth, Pythium root rot, and Pythium arrhenomanes. Phytopathol 88, 530-535. Griffin, D. H. (1994) Characteristic hyphal wall polymers of fungi. Fungal Physiology 2, 69 Hsing, Y. I., Chern, C. G., Fan, M. J., Lu, P. C., Chen, K. T., Lo, S. F., Sun, P. K., Ho, S. L., Lee, K. W., Wang, Y. C., Huang, W. L., Ko, S. S., Chen, S., Chen, J. L., Chung, C. I., Lin, Y. C., Hour, A. L., Wang, Y. W., Chang, Y. C., Tsai, M. W., Lin, Y. S., Chen, Y. C., Yen, H. M., Li, C. P., Wey, C. K., Tseng, C. S., Lai, M. H., Huang, S. C., Chen, L. J., and Yu, S. M. (2007) A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63, 351-164. Huffaker, A., Dafoe, N. J., and Schmelz, E. A. (2011) ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol 155, 1325-1338. Jeon, J. S., Lee, S., Jung, K. H., Jun, S. H., Jeong, D. H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., An, K., Han, M. J., Sung, R. J., Choi, H. S., Yu, J. H., Choi, J. H., Cho, S. Y., Cha, S. S., Kim, S. I., and An, G. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 66, 561-570. J?rnvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J., and Ghosh, D. (1995) Short-chain dehydrogenases/reductases (SDR). Bio-chemistry 34, 6003-6013. Kemmerer, E. C., and Tucker, M. L. (1994) Comparative study of cellulases associated with adventitious root initiation, apical buds, and leaf, flower, and pod abscission zones in soybean. Plant Physiol 104, 557–562. Li, B., Ravnskov, S., Guanlin, X., and Larsen, J. (2011) Differential effects of organic compounds on cucumber damping-off and biocontrol activity of antagonistic bacteria. J Plant Pathol 93, 43-50. Li, H., Zhou, S. Y., Zhao, W. S., Su, S. C., and Peng, Y. L. (2009) A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Mol Biol 69, 337-346. Lorieux, M., Blein, M., Lozano, J., Bouniol, M., Droc, G., Di?vart, A., P?rin, C., Mieulet, D., Lanau, N., B?s, M., Rouvi?re, C., Gay, C., Piffanelli, P., Larmande, P., Michel, C., Barnola, I., Biderre-Petit, C., Sallaud, C., Perez, P., Bourgis, F., Ghesqui?re, A., Gantet, P., Tohme, J., Morel, J. B., Guiderdoni, E. (2012) In-depth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches. Plant Biotechnol J 10, 555-568. Martin, F. N., and Loper, J. E. (1999) Soilborne plant diseases caused by Pythium spp.: Ecology, epidemiology, and prospects for biological control. Crit Rev Plant Sci 18, 111-181. Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., Asfaliza, R., and Latif, M. A. (2013) Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol Biol Rep 40, 2369-2388. Moummou, H., Kallberg, Y., Tonfack, L. B., Persson, B., and van der Rest, B. (2012) The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns. BioMed Cent Plant Biol 12, 219-248. Ni?o-Liu, D. O., Ronald, P. C., and Bogdanove, A. J. (2006) Xanthomonas oryzae pathovars: model pathogen of a model crop. Mol Plant Pathol 7, 303-324. Okubara, P. A., and Paulitz, T. C. (2005) Root defense responses to fungal pathogens: A molecular perspective. Plant Soil 274, 215-226. Oppermann, U.C., Persson, B., Filling, C., and J?rnvall, H. (1997) Structure- function relationships of SDR hydroxysteroid dehydrogenases. Adv Exp Med Biol. 414, 403-415. Ou, S.H. (1972) Rice diseases. Commonwealth Mycological Institute, Kew, Surrey, England. Qiu, D., Xiao, J., Ding, X., Xiong, M., Cai, M., Cao, Y., Li, X., Xu, C., and Wang, S. (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20, 492-499. Sato, Y., Morita, R., Katsuma, S., Nishimura, M., Tanaka, A., and Kusaba, M. (2009) Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57, 120-131. Schoffelmeer, E. A. M., Klis, F. M., Sietsma, J. H., and Cornelissen, B. J. C. (1999) The cell wall of Fusarium oxysporium. Fungal Genet Biol 27, 275-282. Schuerger, A. C., and Hammer, W. (2009) Use of cross-flow membrane filtration in a recirculating hydroponic system to suppress root disease in pepper caused by Pythium myriotylum. Phytopathol 99, 597-607. Shani, Z., Dekel, M., Roiz, L., Horowitz, M., Kolosovski, N., Lapidot, S., Alkan, S., Koltai, H., Tsabary, G., Goren, R., and Shoseyov, O. (2006) Expression of endo-1,4-B-glucanase (cel1) in Arabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. Plant Cell Rep 25, 1067-1074. Skamnioti, P., and Gurr, S. J. (2009) Against the grain: safeguarding rice from blast disease. Trends Biotechnol 27, 141–150. Tsai, W. H., Duan, C. H., Tu, C. C. (1991) A method for screening resistance to Pythium stalk rot in corn cultivars. J Agric Res China 40, 45-51. Urbanowicz, B. R., Bennett, A. B., Del Campillo, E., Catala, C., Hayashi, T., Henrissat, B., Hofte, H., McQueen-Mason, S. J., Patterson, S. E., Shoseyov, O., Teeri, T. T., and Rose, J. K. (2007) Structural organization and a standardized nomenclature for plant endo-1,4-beta-glucanases (Cellulases) of glycosyl hydrolase family 9. Plant Physiol 144, 1693-1696. Urbanowicz, B. R., Catala, C., Irwin, D., Wilson, D. B., Ripoll, D. R., and Rose J. K. C. (2007) A tomatoendo-beta-1,4-glucanase, SlCel9C1, represents a distinct subclass with anew family of carbohydrate binding modules (CBM49) J Biol Chem 282, 12066-12074. Van Buyten, E., Banaay, C. G. B., Vera Cruz, C., and H?fte, M. (2013) Identity and variability of Pythium species associated with yield decline in aerobic rice cultivation in the Philippines. Plant Pathol 62, 139-153. Van Buyten, E., and H?fte, M. (2013) Pythium species from rice roots differ in virulence, host colonization and nutritional profile. BioMed Central Plant Biol 13, 203. White, F. F., and Yang, B. (2009) Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiol 150, 1677-1686. Yoshida, K., and Komae, K. (2006) A rice family 9 glycoside hydrolase isozyme with broad substrate specificity for hemicelluloses in type II cell walls. Plant Cell Physiol 47, 1541-1554. Zhou, H. L., He, S. J., Cao, Y. R., Chen, T., Du, B. X., Chu, C. C., Zhang, J. S., and Chen, S. Y. (2006) OsGLU1, a putative membrane-bound endo-1, 4-beta- D-glucanase from rice, affects plant internode elongation. Plant Mol Biol 60, 137-151.
摘要: 第一章 水稻是最重要的主食之一,提供全球超過三十億人口的糧食來源。在田間,苗枯病,稻熱病,紋枯病,白葉枯病和徒長病等為水稻生長期間常發生的病害,對於農業收穫量造成重大損失。此外,有多種病原菌可引起水稻秧苗立枯病,會造成種子腐爛甚至秧苗猝倒,而Pythium spp.為主要病原菌之一。Pythium可經由稻田中灌溉水傳播游走孢子或卵孢子從水稻根系感染,造成根部腐爛、生長不良、植株黃化,最後導致幼苗猝倒死亡。目前關於水稻抗病相關基因的研究有很多,但對於Pythium的抗性研究則相對不多。對於水稻抗Pythium之篩選,使用自苗栗水稻秧苗分離所獲得對台梗2號、台南11號及台農67水稻在水耕及土壤栽培方式中皆具有高毒力之菌株Py0-T,經鑑定為Pythium arrhenomanes。並且以此菌株建立了一個篩選平台。經過比較接種源的接種方式、接種介質及水稻種子發芽後接種時間點並評估罹病度的計算依據後,我們建立了一個可以快速篩選水稻栽培品系或水稻突變株品系對於P. arrhenomanes Py0–T菌株的抗感篩選平台,並且可於14天內完成一次接種結果。 第二章 台灣T-DNA插入水稻突變庫為中央研究院余淑美院士的團隊所建立,可提供有效率地篩選具功能性之水稻基因。藉由使用在第一章中所建立之水稻對Pythium之抗病篩選系統,我們從498個台灣T-DNA插入水稻突變株中進行篩選,獲得1個對P. arrhenomanes Py0-T菌株具有抗病表現及23個對P. arrhenomanes Py0-T菌株具有高度感病表現的水稻突變株品系。篩選出對P. arrhenomanes Py0-T菌株具抗病表現的品系為Mxxxx164水稻突變株,其T-DNA插入點位於一細胞壁分解酵素基因之上游,預測可能造成此基因的活化。細胞壁分解酵素基因與植物生長的莖節延長、木質部發育和細胞壁增厚相關。另外也發現Mxxxx164水稻突變株對於水稻徒長病菌Fusarium fujikuroi strain IL01的接種具有抗病反應,對於Mxxxx164水稻突變株對Pythium及Fusarium的抗病機制仍需進一步研究。Mxxxx853為T-DNA插入dehydrogenase/reductase基因的轉錄區 (open reading frame)之水稻突變株,T-DNA的插入造成dehydrogenase/reductase基因被破壞。Mxxxx853水稻突變株於幼苗期在莖基部會出現疑似病斑 (lesion mimic)之性狀,但種植後40天此種疑似病斑之性狀會消失。另一相關水稻突變株Mxxxx481,經預測為T-DNA插入活化dehydrogenase/reductase基因之水稻突變株,經種植觀察其幼苗期莖基部並無lesion mimic情況出現,接種試驗顯示水稻突變株Mxxxx853與 Mxxxx481對P. arrhenomanes Py0-T菌株同樣都表現出感病反應,顯示dehydrogenase/reductase基因的功能與台農67水稻對Pythium感病的反應沒有相關。
Chapter 1 Rice is one of the most important staple foods that feeds more than three billion people in the world. Rice diseases occurred during rice growing in the fields, such as seedling blight, blast, sheath blight, bacterial blight and bakana disease, and are a major obstacle for achieving optimal yields. Seedling blight is also known as water-mold disease, seed rot, and seedling damping-off. The disease is caused by several different pathogens and Pythium species is one of the major pathogens. Pythium infects roots of rice by zoospores or oospores spread in flooded rice fields, resulting in root rot, stunting, yellowing and finally causing seedling damping-off. Many disease resistance-related genes in rice have been reported, but very few of them are related to Pythium resistance. Pythium arrhenomanes strain Py0-T, which was isolated from diseased rice seedling on Miaoli, was identified in this study. Pythium arrhenomanes strain Py0-T is a high virulent strain on rice cultivar Taikeng2, Tainan11, and Tainung67 after pathogenicity assay with seedlings growing in hydroponic solution and in soil. After the evaluations on inoculumn potential, inoculation media, rice germination period and the measurements for disease severity, I have established a screening system to rapidly screen rice cultivars or mutant lines for resistance or susceptible to P. arrhenomanes strain Py0-T within 14 days. Chapter 2 Taiwan Insertional Rice Mutant (TIRM) library was generated by Dr. Yu's group and more than ten thousand mutant lines are available in the library, which provides efficient way to identify novel functional genes. Using the screening system developed in chapter 1, I have screened 498 rice cv. Tainung67 T-DNA insertion mutant lines from TIRM library. One resistant and 23 highly susceptible lines to Pythium arrhenomanes strain Py0-T were obtained. Mxxxx164 was shown to resist to P. arrhenomanes strain Py0-T, which T-DNA inserted in the upstream of a cell wall degrading enzyme gene and may result in the activation of this gene. Cell wall degrading enzymes are involved in plant internode elongation, xylem development and cell wall thickening. Interestingly, I found that Mxxxx164 also is tolerant to the infection of Fusarium fujikuroi strain IL01. The resistance mechanisms to Pythium and Fusarium infection will be further investigated. Mxxxx853 is a rice mutant with T-DNA insertion in the ORF region of a dehydrogenase/reductase gene, resulting in dehydrogenase/reductase gene disruption. Mxxxx853 showed lesion mimic phenotype at the basal part of stem at seedling stage but lesion mimic phenotype disappeared after planting for 40 days in soil. A dehydrogenase/reductase gene activation mutant line (Mxxxx481) was found in TRIM library, in which lesion mimic phenotype did not appear. Both Mxxxx853 and Mxxxx481 lines are susceptible to the infection of P. arrhenomanes strain Py0-T, suggesting that the ehydrogenase/reductase is not related to rice TNG67 susceptibility to Pythium.
URI: http://hdl.handle.net/11455/89355
文章公開時間: 10000-01-01
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.