Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorChih-Li Wangen_US
dc.contributor.authorShang-Wei Yangen_US
dc.identifier.citationAasland R., Stewart A.F., Gibson T., 1996. The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional corepressor N-CoR and TFIIIB. Trends in Biochemical Sciences 21, 87-88. Agrios G.N., 2005. Plant Pathology. 5th Edition, pp. 487-500. Elsevier Academic Press, Amsterdam. Antal Z., Rascle C., Cimerman A., Viaud M., Billon-Grand G., Choquer M., Bruel C., 2012. The homeobox BcHOX8 gene in Botrytis cinerea regulates vegetative growth and morphology. PLoS One 7, e48134. Arnaise S., Zickler D., Poisier C., Debuchy R., 2001. pah1: a homeobox gene involved in hyphal morphology and microconidiogenesis in the filamentous ascomycete Podospora anserina. Molecular Microbiology 39, 54-64. Banerjee-Basu S., Baxevanis A.D., 2001. Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Research 29, 3258-3269. Bannister A.J., Kouzarides T., 2011. Regulation of chromatin by histone modifications. Cell Research 21, 381-395. Baxter A., Mittler R., Suzuki N., 2014. ROS as key players in plant stress signalling. Journal of Experimental Botany 65, 1229-1240. Bimboim H., Doly J., 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7, 1513-1523. Boyer L.A., Langer M.R., Crowley K.A., Tan S., Denu J.M., Peterson C.L., 2002. Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Molecular Cell 10, 935-942. Boyer L.A., Latek R.R., Peterson C.L., 2004. The SANT domain: a unique histone-tail-binding module? Nature Reviews Molecular Cell Biology 5, 158-163. Brown A.J., Budge S., Kaloriti D., Tillmann A., Jacobsen M.D., Yin Z., Ene I.V., Bohovych I., Sandai D., Kastora S., 2014. Stress adaptation in a pathogenic fungus. The Journal of Experimental Biology 217, 144-155. Cannon P., Damm U., Johnston P., Weir B., 2012. Colletotrichum–current status and future directions. Studies in Mycology 73, 181-213. Chaveroche M.K., Ghigo J.M., d'Enfert C., 2000. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Research 28, e97. Davidson R.C., Blankenship J.R., Kraus P.R., De Jesus Berrios M., Hull C.M., D'souza C., Wang P., Heitman J., 2002. A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148, 2607-2615. Dean R, Van Kan J.A., Pretorius Z.A., Hammond-Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., Foster G.D., 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13, 414-430. Dong Y., Zhao Q., Liu X., Zhang X., Qi Z., Zhang H., Zheng X., Zhang Z., 2015. MoMyb1 is required for asexual development and tissue-specific infection in the rice blast fungus Magnaporthe oryzae. BMC Microbiology 15, 37. Duboule D., 1994. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development 1994, 135-142. Edwards K., Johnstone C., Thompson C., 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19, 1349. Engelsdorf T., Horst R.J., Pröls R., Pröschel M., Dietz F., Hückelhoven R., Voll L.M., 2013. Reduced carbohydrate availability enhances the susceptibility of Arabidopsis toward Colletotrichum higginsianum. Plant Physiology 162, 225-238. Fujihara N., Sakaguchi A., Tanaka S., Fujii S., Tsuji G., Shiraishi T., O'connell R., Kubo Y., 2010. Peroxisome biogenesis factor PEX13 is required for appressorium-mediated plant infection by the anthracnose fungus Colletotrichum orbiculare. Molecular Plant-Microbe Interactions 23, 436-445. Garcia-Fernandez J., 2005. The genesis and evolution of homeobox gene clusters. Nature Review Genetics 6, 881-892. Gehring W.J., 1992. The homeobox in perspective. Trends in Biochemical Sciences 17, 277-280. Gelvin S.B., 2003. Improving plant genetic engineering by manipulating the host. Trends in Biotechnology 21, 95-98. Giraldo M.C., Valent B., 2013. Filamentous plant pathogen effectors in action. Nature Reviews Microbiology 11, 800-814. Goh T-K., 1999. Single-spore isolation using a hand-made glass needle. Fungal Diversity 2, 47-63. Green M.R., Sambrook J., 2012. Molecular Cloning: A Laboratory Manual. 4th Edition, pp. 133-150 Cold Spring Harbor Laboratory Press New York. Higgins B.B., 1917. A Colletotrichum leafspot of turnips. Journal of Agriculture Research 10, 157-161. Hohmann S, 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews 66, 300-372. Huser A., Takahara H., Schmalenbach W., O'connell R., 2009. Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. Molecular Plant-Microbe Interactions 22, 143-156. Kim S., Park S.Y., Kim K.S., Rho H.S., Chi M.H., Choi J., Park J., Kong S., Park J., Goh J., Lee Y.H., 2009. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genetics 5, e1000757. Kleemann J., Rincon-Rivera L.J., Takahara H., Neumann U., Ver Loren Van Themaat E., Van Der Does H.C., Hacquard S., Stuber K., Will I., Schmalenbach W., Schmelzer E., O'connell R.J., 2012. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathogen 8, e1002643. Kubo Y., Takano Y., Endo N., Yasuda N., Tajima S., Furusawa I., 1996. Cloning and structural analysis of the melanin biosynthesis gene SCD1 encoding scytalone dehydratase in Colletotrichum lagenarium. Applied and Environmental Microbiology 62, 4340-4344. Larkin M.A., Blackshields G., Brown N., Chenna R., Mcgettigan P.A., Mcwilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. Lee M-H., Bostock R.M., 2006. Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Current Genetics 49, 309-322. Lin C.L., Huang J.W., 2002. The occurrence of cruciferous vegetable anthracnose in Taiwan and identification of its pathogen. Plant Pathology Bulletin 11, 173-178 Liu L., Zhao D., Zheng L., Hsiang T., Wei Y., Fu Y., Huang J., 2013. Identification of virulence genes in the crucifer anthracnose fungus Colletotrichum higginsianum by insertional mutagenesis. Microbial Pathogenesis 64, 6-17. Liu W., Xie S., Zhao X., Chen X., Zheng W., Lu G., Xu J-R., Wang Z., 2010. A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae. Molecular Plant-Microbe Interactions 23, 366-375. Michielse C.B., Hooykaas P.J., Van Den Hondel C.A., Ram A.F., 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics 48, 1-17. Narusaka M., Abe H., Kobayashi M., Kubo Y., Narusaka Y., 2006. Comparative analysis of expression profiles of counterpart gene sets between Brassica rapa and Arabidopsis thaliana during fungal pathogen Colletotrichum higginsianum infection. Plant Biotechnology 23, 503-508. Narusaka Y., Narusaka M., Park P., Kubo Y., Hirayama T., Seki M., Shiraishi T., Ishida J., Nakashima M., Enju A., Sakurai T., Satou M., Kobayashi M., Shinozaki K., 2004. RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Molecular Plant-Microbe Interactions 17, 749-762. Nicholas, K.B., Nicholas H.B. Jr., and Deerfield, D.W. II. 1997 GeneDoc: analysis and visualization of genetic variation, 4, 14 Nikolaou E., Agrafioti I., Stumpf M., Quinn J., Stansfield I., Brown AJ, 2009. Phylogenetic diversity of stress signalling pathways in fungi. BMC Evolutionary Biology 9, 44. O'connell R., Herbert C., Sreenivasaprasad S., Khatib M., Esquerre-Tugaye M.T., Dumas B, 2004. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Molecular Plant-Microbe Interactions 17, 272-282. O'connell R..J, Thon M.R., Hacquard S., Amyotte S.G., Kleemann J., Torres M.F., Damm U., Buiate E.A., Epstein L., Alkan N., Altmuller J., Alvarado-Balderrama L., Bauser C.A., Becker C., Birren B.W., Chen Z.H., Choi J., Crouch J.A., Duvick J.P., Farman M.A., Gan P., Heiman D., Henrissat B., Howard R.J., Kabbage M., Koch C., Kracher B., Kubo Y., Law A.D., Lebrun M.H., Lee Y.H., Miyara I., Moore N., Neumann U., Nordstrom K., Panaccione D.G., Panstruga R., Place M., Proctor R.H., Prusky D., Rech G., Reinhardt R., Rollins J.A., Rounsley S., Schardl C.L., Schwartz D.C., Shenoy N., Shirasu K., Sikhakolli U.R., Stuber K., Sukno S.A., Sweigard J.A., Takano Y., Takahara H., Trail F., Van Der Does H.C., Voll L.M., Will I., Young S., Zeng Q.D., Zhang J.Z., Zhou S.G., Dickman M.B., Schulze-Lefert P., Van Themaat E.V.L., Ma L.J., Vaillancourt L.J., 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics 44, 1060-1065. Pabo C.O., Sauer R.T., 1992. Transcription factors: structural families and principles of DNA recognition. Annual Review of Biochemistry 61, 1053-1095. Paz Z., Garcia-Pedrajas M.D., Andrews D.L., Klosterman S.J., Baeza-Montanez L., Gold S.E., 2011. One Step Construction of Agrobacterium-Recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. Fungal Genetics and Biology 48, 677-684. Perfect S.E., Hughes H.B., O'connell R.J., Green J.R., 1999. Colletotrichum: a model genus for studies on pathology and fungal–plant interactions. Fungal Genetics and Biology 27, 186-198. Perpetua N.S., Kubo Y., Yasuda N., Takano Y., Furusawa I., 1996. Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium. Molecular Plant-Microbe Interactions 9, 323-329. Rakow G, 2004. Species Origin and Economic Importance of Brassica. In: Pua E-C, Douglas C, eds. Brassica. Springer Berlin Heidelberg, 3-11. (Biotechnology in Agriculture and Forestry; vol. 54.) Ram A.F., Klis F.M., 2006. Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nature Protocols 1, 2253-2256. Rispail N., Pietro A.D., 2010. The homeodomain transcription factor Ste12: Connecting fungal MAPK signalling to plant pathogenicity. Communicative & Integrative Biology 3, 327-332. Rovenich H., Boshoven J.C., Thomma B.P., 2014. Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Current Opinion in Plant Biology 20, 96-103. Schneider C.A., Rasband W.S., Eliceiri K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671-675. Scott M.P., Weiner A.J., 1984. Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proceedings of the National Academy of Sciences 81, 4115-4119. Seiler S., Plamann M., 2003. The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Molecular Biology of the Cell 14, 4352-4364. Silva J., Chang K., Hannon G.J., Rivas F.V., 2004. RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23, 8401-8409. Stephenson S.A., Hatfield J., Rusu A.G., Maclean D.J., Manners J.M., 2000. CgDN3: an essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis. Molecular Plant-Microbe Interactions 13, 929-941. Takahara H., Huser A., O'connell R., 2012. Two arginine biosynthesis genes are essential for pathogenicity of Colletotrichum higginsianum on Arabidopsis. Mycology 3, 54-64. Takano Y., Kubo Y., Shimizu K., Mise K., Okuno T, Furusawa I, 1995. Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Molecular and General Genetics 249, 162-167. Thon M., Nuckles E., Takach J., Vaillancourt L., 2002. CPR1: a gene encoding a putative signal peptidase that functions in pathogenicity of Colletotrichum graminicola to maize. Molecular Plant-Microbe Interactions 15, 120-128. Torres M.A., Jones J.D., Dangl J.L., 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiology 141, 373-378. Torres M.F., Cuadros D.F., Vaillancourt L.J., 2013. Evidence for a diffusible factor that induces susceptibility in the Colletotrichum–maize disease interaction. Molecular Plant Pathology 15, 80-93. Weaver R.F., 2008. Molecular Biology. 5th Edition, pp. 314-354. The McGraw-Hill companines. New York. Yakoby N., Beno-Moualem D., Keen N.T., Dinoor A., Pines O., Prusky D., 2001. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction. Molecular Plant-Microbe Interactions 14, 988-995. Yarden O., Plamann M., Ebbole D., Yanofsky C., 1992. cot-1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase. The EMBO Journal 11, 2159-2166. Zheng W., Zhao X., Xie Q., Huang Q., Zhang C., Zhai H., Xu L., Lu G., Shim W.B., Wang Z., 2012. A conserved homeobox transcription factor Htf1 is required for phialide development and conidiogenesis in Fusarium species. PLoS One 7, e45432.zh_TW
dc.description.abstract植物炭疽病造成全球許多重要經濟作物的生產損失,主要由Colletotrichum 屬的真菌所引起,其寄主範圍廣泛,包括蔬菜、花卉及果樹等,而Colletotrichum higginsianum 為引起蕓苔屬 (Brassica) 及蘿蔔屬 (Raphanus) 等重要蔬菜之十字花科炭疽病 (crucifer anthracnose) 的病原菌,在台灣普遍發生於有機種植的菜園, 另外C. higginsianum 也感染模式植物阿拉伯芥 (Arabidopsis thaliana) ,被推薦為研究炭疽病菌與雙子葉植物交互作用的模式病理系統 (model pathosystem) 。過去曾報導植物病原真菌含有 homeodomain 之轉錄因子,該類轉錄因子在Magnaporthe oryzae 與Botrytis cinerea可藉由影響植物病原真菌之形態構造發育而影響病原菌侵染植物的能力。於前人研究十字花科炭疽病菌侵染阿拉伯芥的transcriptome 分析,顯示C. higginsianum CH063_09099 和CH063_11689 在已知具有homeodomain-like motif 之轉錄因子中有較高的表現量,本實驗室早先的研究中也發現此2個基因在侵染白菜的死體營養期 (necrotrophic stage) 具有較高的表現量,因此本研究針對此2個基因探討其功能。本研究使用農桿菌媒介轉殖 [Agrobacterium tumefaciens-mediated transformation (ATMT) ] 獲得基因剔除菌株 (gene knockout strain) ,並利用PCR 與南方墨點法 (Southern blot) 進行基因剔除菌株的基因型確認,獲得正確的基因剔除菌株後,進一步進行表現型分析 (phenotype analysis) 。CH063_09099 基因剔除菌株形態構造與野生型菌株有明顯的差異,其分生孢子較細長、菌落生長緩慢、在Czapek- Dox培養基上菌絲缺乏螺旋生長的趨勢,當菌絲生長於載玻片上其側生菌絲常自分岔點過度分岔形成束狀菌絲團。CH063_09099 基因剔除菌株在生體外 (in vitro) 與生體內 (in vivo) 可正常地形成附著器 (appressorium) ,有趣的是在阿拉伯芥之病原性測試顯示其與野生型菌株有相似的毒力表現,但接種於白菜上僅顯現輕微病徵或是沒有病斑形成,檢視在白菜上的侵染構造,大多數基因剔除菌株的分生孢子之侵染構造多停留在附著器時期或活體營養時期,而野生型菌株則多數發展至死體營養時期。在逆境反應的測試中顯示,CH063_09099基因剔除株對滲透壓逆境、高濃度之氧化逆境與細胞壁逆境均較野生型菌株有耐受性。另一方面 CH063_11689 基因剔除菌株亦可在生體外與生體內產生正常的附著器,其菌落生長速度及形態構造與野生型菌株相似,唯具有較短的分生孢子。而在逆境反應的測試中顯示,CH063_11689基因剔除株對離子型的滲透壓逆境及氧化逆境與野生型菌株相比呈現相類似之耐受趨勢,但在細胞壁逆境中則較野生型菌株敏感,且在非離子型的滲透壓逆境中耐受性較高。值得注意的是,CH063_11689基因剔除株在阿拉伯芥與白菜的病原性測試,顯示其僅造成輕微的點狀初期病斑,在白菜上大多數基因剔除株的分生孢子之侵染構造多停留在活體營養時期,唯有在輕微病斑形成處觀察到少部分發展到死體營養時期的侵染構造。本研究結果顯示推測,CH063_09099 為可影響真菌形態發育及感知多種環境逆境訊號傳遞路徑的轉錄因子,而此兩方面的功能改變造成病原菌在不同寄主植物上顯現不同的毒力表現;CH063_11689 則可能影響致病過程感染初期的基因表現。zh_TW
dc.description.tableofcontents中文摘要 i Abstract iii 目次 v 表次索引 vii 圖次索引 viii 附圖索引 ix 前言 1 材料與方法 8 菌株、載體來源與保存及聚合酶鏈鎖反應引子對序列 8 生物資訊分析 8 基因剔除載體之構築 9 細菌質體DNA萃取 10 農桿菌基因轉殖技術 10 真菌基因體DNA萃取 11 轉殖株之基因型確認 12 南方墨點法 12 (一)南方墨點法核酸探針製備 12 (二)南方墨點法分析 13 基因恢復載體之構築與基因片段增幅 14 PEG媒介共轉殖基因技術獲得基因恢復菌株 15 (一)原生質體之製備 15 (二)PEG媒介原生質體基因轉殖 16 基因剔除菌株表現型分析 16 (一)菌落形態觀察 16 (二)菌絲形態觀察 17 (三)產孢與孢子形態觀察 17 (四)環境逆境耐受性測試 18 (五)附著器與侵入孔之形成觀察 18 (六)病原性測試 19 結果 20 目標基因之胺基酸序列分析 20 基因剔除載體之構築 20 基因剔除菌株之驗證 22 基因剔除菌株對菌落形態之影響 23 基因剔除菌株菌絲形態特徵分析 25 基因剔除菌株對產孢的影響 26 基因剔除菌株之病原性測試及侵染過程觀察 27 環境逆境耐受性測試分析 30 討論 32 參考文獻 39zh_TW
dc.subjectColletotrichum higginsianumen_US
dc.subjectcrucifer anthracnoseen_US
dc.subjecttranscription factoren_US
dc.subjectmorphological developmenten_US
dc.subjectstress responseen_US
dc.title十字花科炭疽病菌之兩個含有homeodomain-like motif轉錄因子的功能分析zh_TW
dc.titleFunctional analysis of two transcription factors containing homeodomain-like motif in Colletotrichum higginsianumen_US
dc.typeThesis and Dissertationen_US
Appears in Collections:植物病理學系


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.