Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89374
標題: Field Experimental Analysis of Twin Dam Failure Processes
雙堰塞壩潰決歷程現地試驗分析
作者: 曾馥敏
Fu-Min Tseng
關鍵字: 堰塞湖
現地試驗
水文歷線
管湧
溢頂潰決
Landslide dam
Field experiment
Hydrograph
Piping
Over-Topping
引用: 1. 王強(2014),「現地試驗分析天然壩潰決歷程」,國立中興大學,水土保持學系,碩士學位論文 2. 田述軍、孔紀名(2010),「汶川地震山地災害對環境因素的影響機制」,四川大學學報(工程科學版),42(5):92~98。 3. 田畑茂清、水山高九、井上公夫(2002),「天然災害」,古今書院,東京。 4. 林琮文(2011),「堰塞壩潰決型態對下游河床變化影響之探討」,碩士學位論文 5. 高橋保、匡尚富(1988),「天然決壊土石流規模関研究」,京都大學防災研究所年報,第31號,B-2,1988。 6. 柴賀軍等(2002) 、劉漢超(2002),「岷江上游多級多期崩滑堵江事件初步研究」,山地學報,20(5):616~620。 7. 徐子陽(2013),「堰塞壩溢頂潰決現地試驗與室內試驗」,國立中興大學,水土保持學系,碩士學位論文 8. 陳樹群(1999),「堰塞湖潰決機制與減災工法研究」,中華水土保持學報,30(4):299~311。 9. 陳樹群、吳俊鈜(2009)「莫拉克颱風引致小林村堰塞湖之形成與潰決歷程」,中華水土保持學報,40(4):377~392。 10. 許中立、陳樹群、施保呈、陳二銘、邱欣蔚、張蘇能(2010),「莫拉克風災區之堰塞湖防災與警戒」,工程環境會刊,24:85~98。 11. 劉寧、程尊蘭、崔鵬、陳寧生(2013),「堰塞湖及其風險控制」,科學出版社,北京,135~138。 12. 聶高眾、高建國、鄧硯(2004) ,「地震誘發的堰塞湖初步研究」,第四紀研究,24(3):293~301。 13. Brambilla S., Ferrari F. and Gatti D. (1999). 'Cascade dam failure analysis using a lagrangian specification of the flow field.' IAHR Confess. Graz, Austria, 22-27. 14. Casagli, N., and Ermini, L., (1999). Geomorphic analysis of landslide dams in the Northern Apennine. Transactions of the Japanese Geomorphological Union 20 (3), 219–249. 15. Casagli, N., Ermini, L., and Rosati, G., (2003). Determining grain size distribution of material composing landslide dams in the Northern Apennine: sampling and processing methods. Engineering Geology 69, 83–97. 16. Chai., Liu., and Zhang. (2001). 'Preliminarily stability analysis of natural rock field dam resulting from damming landslide,' Geological Science and Technology Information, 20 (1), 77-81. 17. Costa, J.E., and Schuster, R.L., (1988). 'The formation and failure of natural dam,' Geological Society of America Bulletin 100, 1054-1068. 18. Costa, J. E. and R. L. Schuster (1991), 'Documented historical landslide dams from around the world,' Open-File Report (United States Geological Survey), 91-239. 19. Cui, P., Dang, C., Zhuang, J.Q., You, Y., Chen, X.Q., and Scott, K.M., (2012), 'Landslide-dammed lake at Tangjiashan, Sichuan province, China (triggered by the Wenchuan Earthquake, May 12, 2008): risk assessment, mitigation strategy, and lessons learned,' Environmental Earth Sciences, 65(4), 1055-1065. 20. Ermini, L. and Casagli, N. (2003), 'Prediction of the Behaviour of Landslide Dams using a Geomorphological Dimensionless Index,' Earth Surface Processes and landforms, 28, 31-47. 21. Fread, D.L. (1977). 'The development and testing of a dam-break flood forecasting model.' Proc., Dam Break Flood Routing Model Workshop, U.S. Dept. of Commerce, Nat. Tech. Service, Oct., 164-197. 22. Fread, D.L. (1984). DAMBRK:The NWS Dam-Break Flood Forecasting Model, Silver Spring, Maryland., National Weather Service, Office of Hydrology. 23. Fread, D. L. (1988). 'The NWS DAMBRK model: Theoretical background/user documentation.' HRL-258, Hydrologic Research Laboratory Report, National Weather Service, Silver Spring, Md. 24. Froehlich, D.C., (2008). 'Embankment dam breach parameters and their uncertainties,' Journal of Hydraulic Engineering, 130(12), 1708-1721. 25. Hason, G.H., Cook, K. R., and Hunt, S. L. (2005). 'Physical modeling of overtopping erosion breach formation of cohesive embankment.' Trans. ASABE, 48(5), 1783-1794. 26. Hanson, G. J., Tejral, R. D., Hunt, S. L., and Temple, D. M. (2010). 'Internal erosion and impact of erosion resistance.' Proc., 30th U.S. Society on Dams Annual Meeting and Conference (CD-ROM), USSD, Sacramento, CA, 773–784. 27. Korup, O. (2002), 'Recent research on landslide dams - a literature review with special attention to New Zealand,' Progress in Physical Geography, 26, 206~235. 28. Mohamed, M. A. A., Samuels, P. G., Morris, M. W., and Ghataora, G. S. (2002). 'Improving the accuracy of prediction of breach formation through embankment dams and flood embankments.' River Flow 2002, Proc., Int. Conf. on Fluvial Hydraulics, Vol. 1, D. Bousmar and Y. Zech, eds., Balkema, Lisse, The Netherlands. 29. Niu Z., P., Xu W., L., Li N., W., and Xue Y., (2012) 'Experimental investigation of the failure of cascade landslide dams.' Journal of Hydrodynamics, 24 (3), 430-441 30. Schuster, L. and Costa, E. (1986) 'A perspective on landslide dams, Landslide Dams,' Geotechnical Special Publication No.3, ASCE, New York, 1-20 31. Schuster, R. L. (2000), 'Outburst debris flows from failure of natural dams,' Proceedings 2nd International Conference on Debris Flow Hazard Mitigation, 29-42. 32. Schuster, R. L. and Costa J. E. (1986). 'A Perspective on Landslide Dams,' Landslide Dams, Processes, Risk and Mitigation, 1-20. 33. Singh, K. P., and Snorrason, A. (1984). 'Sensitivity of outflow peaks and flood stages to the selection of dam breach parameters and simulation models.' J. Hydrol., 68, 295–310. 34. Swanson, F.J., Oyagi, N., Tominaga, M., 1986. Landslide dam in Japan. In: Schuster, R.L. (Ed.), Landslide Dam: Processes Risk and Mitigation. Geotechnical Special Publication, 3. American Society of Civil Engineers, 131–145. 35. Terzaghi, K. and Peck, R.B. (1996). 'Soil Mechanics in Engineering Practice,' 222-235. 36. Wahl, T. L. (1998). 'Prediction of embankment dam breach parameters: A literature review and needs assessment.' Dam Safety Rep. No. DSO-98-004, Bureau of Reclamation, U.S. Dept. of the Interior, Denver. 37. Wahl, T.L. (2004), 'Uncertainty of predictions of embankment dam breach parameters,' Journal of Hydraulic Engineering, 130(5), 389-397. 38. Wu, W. (2011), 'Earthen embankment breaching,' Journal of Hydraulic Engineering, 137(12), 1549-1564.
摘要: 由於極端氣候日益,台灣地區降雨發生頻繁,造成許多崩塌以及土石流事件,而土石流沖入河道阻塞形成堰塞壩,堰塞湖水流溢頂破壞造成堰塞壩潰決對下游產生第二次災害,並且也會威脅下游居民及生命財產。 為探討不同距離對堰塞湖潰決形態及水理特性之影響,本研究於惠蓀林場蘭島溪試驗站堆置兩座堰塞壩,當下游壩(Dam2)之蓄水空間蓄滿時,水位正好觸及上游壩(Dam1)之下游面坡趾,此時兩壩的距離定義為L,壩體間距為32.4m,本研究三次試驗間距分別為16.2m、32.4m、64.8m。利用固定上游堰塞壩壩體並移動下游壩體的方式改變間距,並配合影像、水位及地形測量等,觀測下游壩體潰決形態及分析其水理特性。本研究主要分為兩個部份,第一部份利用粒徑分析和3D雷射掃瞄地形測量現地壩體潰決前後,探討其河床之變化,第二部份為影像觀測、水位變化等方式探討其潰決發展歷程。 結果顯示,雙壩之主要交互影響為縮短壩體間距時,上游潰決水流造成下游湖體水位迅速抬升,縮短堰塞湖蓄水歷程及管湧作用影響時間,下游堰塞壩易產生溢頂潰決。當雙壩距離為0.5L時,因距離縮短導致下游壩的上游面受到潰決水流的沖擊影響較大,其下游壩D比距離為L時增加了20%,比壩體間距為2L時增加了27%。 此外,由地形前後變化發現,不同壩體間距的潰決水流對下游河床變化影響程度亦不相同,在下游有阻礙物時,75%以上的泥砂會沉積於壩體下游之阻礙物前;而在下游無阻礙物時,僅有27%之土砂堆積於壩體下游處,水流挾砂能力取決於下游地形是否有阻礙物。
Due to the extreme climate, the heavy rainfall frequently caused the landslide and debris flow events which entering the river channel and evolving into landslide dam in Taiwan. The landslide dam destroyed by over-topping flow and induced the secondary damage of the river channel, and even involve the life and property safety of the residents living on the downstream area. This study constructed a full scale twin-dam system in Landao Creek, Huisun forest, Taiwan from its own alluvium to investigate the dam break morphology and physical properties between twin dams with three intervals in 16.2m (0.5L), 32.4m (L) and 64.8m (2L). When the Dam2 storage was full, the water depth just touch the toe of Dam1, which interval of twin dam defined as L. We adjusted the interval by fixed upstream dam and changed downstream dam site. This study observed and analyzed dam failure processes and hydraulic properties of the downstream landslide dam through the image, water depth and 3D Lidar model of the river bed. Grain size distribution investigation and 3D Lidar model of the stream bed were executed before and after dams break to discuss the river morphology evolution. To explore the type of breach varying with time and dam failure processes, we analyzed cameras images and data recorded from water level gauges. The result showed that the decrement of dam interval led to a greater damage and rapid increment of water level which was prompted by outburst flow from the upstream dam failure at downstream dam, and induced flow storage and piping duration of the downstream dam. When the interval between twin dams was 0.5L which result in a stronger torrent impact at upstream side of downstream dam, more significant reduction in dam intensity and wider breach which was 21% more than interval L and 27% more than interval 2L. Finally, the transport distance of sediment which yielded from upstream dam breach depend on whether downstream was obstructed or not. When there has obstruction of downstream, 75% sediment of upstream dam were deposited before the downstream dam and only 27% sediment were deposited before the downstream dam without the obstruction.
URI: http://hdl.handle.net/11455/89374
其他識別: U0005-3107201515060800
文章公開時間: 2018-08-04
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.